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Abstract  

Recent experiments have shown the applicability of single-layered graphene sheets as electromechanical resonators. Here we 

introduce a nonlinear continuum plate model for the study of linear and nonlinear free vibration properties of single-layered 

graphene sheets. By this analysis, natural frequencies and the associated mode shapes pertaining to different values of m and n  

for single-layered graphene sheets are given. Also, the effects of the aspect ratio on the fundamental frequencies and the 

associated mode shapes are investigated. The nonlinear relationship between vibration amplitude and frequency are analyzed in 

the neighborhood of a given frequency. Parts of results are verified well with experimental observations. 
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1 INTRODUCTION  

Since Novoselov et al. [1, 2] successfully separated thin graphene sheet(GS) out of bulk graphite by mechanical 

exfoliation of highly ordered pyrolytic graphite by Scotch tape in 2004, it have stimulated great interest in studying 

various fundamental properties and possible applications of grpahene sheets. He and his coauthors [3-5] analyzed 

vibration properties of multi-layered graphene sheets(MLGSs) with or without an elastic matrix using a continuum 

model including a formula explicitly derived for van der Waals(vdW) interaction. They found that the effect of vdW 

interaction had no influence on the lowest natural frequency of multilayered graphene sheets without an elastic 

matrix but played a significant role in all higher natural frequencies. They also studied the influence of vdW 

interaction and the moduli of the surrounding matrix on the natural frequencies. Behfar and Naghdabadi [6] 

investigated vibration of multi-layered graphene sheets embedded in polymer matrices, in which an anisotropic plate 

model for polymer molecules was used through vdW interactions. They derived the natural frequencies and the 

associated vibration mode shapes of this composite system. Bunch et al. [7] reported the fundamental frequencies 

and the quality factors of graphene resonators fabricated from single- and multi-layered graphene sheets by 

mechanically exfoliating thin sheets from graphite suspended over a SiO2 trench. Sakhaee-Pour et al. [8] studied 

mode shapes and natural frequencies of single-layered graphene sheets(SLGSs) using a molecular structural 

mechanics method developed by Li and Chou [9]. The discerned aspect ratio is important at higher modes, but the 

modes themselves do not have an impact on the fundamental frequencies. Recently, Shen et al.[10] studied nonlinear 

vibration behavior of single-layered graphene sheet in thermal environments via nonlocal orthotropic plate model. 

Wang et al.[11] investigated nonlinear vibration properties of multi-walled graphene sheet by a nonlinear continuum 

model, in which the influence of van der Waals force on vibration properties of MLGS as well as vibration models 

were analyzed.  

It is shown that the classical continuum models are efficient in vibration analysis of graphene sheets. However, it can 

be found that most studies have focused on linear vibration properties of single- or multi-layered graphene sheets. 

Thus, in this paper, nonlinear and linear free vibration properties of single-layered graphene sheet are studied using a 

nonlinear continuum mechanical model described via the von kármán equation of motion of plates. Based on the 

present analysis, linear and nonlinear vibration modes and frequencies are given for SLGSs. The influences of aspect 
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rations on the fundamental frequencies as well as the backbone curves are also proposed for SLGS. 

2 THEORETICAL MODEL 

 
FIG.1 A SINGLE LAYERED GRAPHENE SHEET 

Consider a SLGS as a finite, simply supported rectangle plate is shown in Fig.1. The length of this plate is a, the 

width b, and the thickness is h. Equation governing the free vibration of SLGS can be described via the von kármán 

equation, i.e.   
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where x  and y  are the coordinates in length and width sides, w is the deflection of the sheet, t is the time, D is the 

bending stiffness of the individual sheet, and  is the mass density of GS. F is an in-plane Airy stress function, 

given by the following relation: 
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In Eqs. (1) and (2), the bi-harmonic operator is defined as  
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                                                                          (3) 

It is noted that the present nonlinear model can be reduced to the linear model presented as all nonlinear terms are 

ignored in Eq. (1). Thus, the present model is available for nonlinear as well as linear vibration analysis of SLGS. 

For the boundary condition of simply supported with immovable edges, the deflection w  of SLGS can be 

approximated by a periodic solution that satisfies all boundary conditions identically, as follows. 
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where mnA  are the generalized coordinates (unknown functions of t ), and a and b are length and width of SLGS, 

respectively, and m and n are numbers of half-waves in x and y directions, respectively. In the following analysis, 

1m   and 1,3n   are included in the expansion for studying nonlinear vibrations of SLGS in the spectral 

neighborhood of lower resonances. Substituting the expansion of w  into Eqs. (1) and (2) and using the Galerkin 

method, two second-order, ordinary, coupled nonlinear differential equations will be obtained with variables 11( )A t  

and 13( )A t  as below. 
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and 
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where the expressions of 1 2 8, , ,B B B  are presented in Appendix A 

Then, the harmonic balance method is applied to resolve equations (5) and (6), in which the steady state response can 

be written as 

( ) cos( )mn mnA t c t                                                                          (7) 

where   is the vibration frequency, and mnc  are the vibration amplitude of SLGS  corresponding to mode ( , )m n . 

Substituting Eq. (7) into Eqs. (5) and (6), the resulting equations of motion in the frequency domain are obtained as 

follows: 
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and 
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where the expressions of 1 2 8, , ,H H H  are presented in Appendix A. It can be found that the amplitude-frequency 

relationship for the nonlinear free vibration of SLGS by solving Eqs. (8) and (9) iteratively. 

3 Discussion and Results 

In present analysis, Young’s modulus of SLGS 1.02E TPa , Poisson’s ratio 0.16   [12], and the mass density 
3 2250 kg/m  , thickness of SLGS is assumed to be 0.34h nm . 

3.1 Linear Free Vibration Analysis for SLGS 

For analyzing the linear free vibration properties of SLGS, nonlinear terms in Eq. (1) need be ignored. The deflection 

of SLGS is approximated by a periodic solution of the form: 
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Thus, substituting Eq. (10) into Eq. (1), we can obtain the natural frequencies of SLGS with different (n, m) as well 

as the influence of the aspect ratio of SLGS on its free vibration properties. 

Table 1 shows the natural frequencies for a square SLGS with width of 10 nm corresponding to the different 

combinations of m and n. According to 1 2 10     , it can found from Table 1 that the first ten natural 

frequencies of SLGS with a=b=10 nm are  1 0.0691THz  , 2 0.1728THz  , 3 0.2765THz  , 4 0.3456THz  , 

5 0.4493THz  , 6 0.5875THz  , 7 0.6221THz  , 8 0.6912THz  , 9 0.8640THz  , 10 0.8986THz  , 

respectively. It is also found that the fundamental (first) frequency is 69.1 MHz, which agrees well with the 

corresponding experimental result 0 70.5f  MHz [7]. 

TABLE 1 NATURAL FREQUENCIES (THZ) for A SQUARE SINGLE-LAYERED GRAPHENE SHEET with WIDTH A=B = 10 NM 

n m=1 m=2 m=3 m=4 m=5 m=6 

1 0.0691 0.1728 0.3456 0.5875 0.8986 1.2786 

2 0.1728 0.2765 0.4493 0.6912 1.0023 1.3824 

3 0.3456 0.4493 0.6221 0.8640 1.1751 1.5552 

4 0.5875 0.6912 0.8640 1.1060 1.4170 1.7972 

5 0.8986 1.0023 1.1751 1.4170 1.7280 2.1082 

6 1.2788 1.3824 1.5552 1.7972 2.1082 2.4884 

7 1.7280 1.8317 2.0045 2.2465 2.5575 2.9377 

8 2.2465 2.3501 2.5229 2.7649 3.0759 3.4561 

9 2.8340 2.9377 3.1105 3.3524 3.6635 4.0436 

10 3.4906 3.5943 3.7671 4.0091 4.3201 4.7003 
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FIG. 2 FUNDAMENTAL FREQUENCIES of SLGSS with DIFFERENT ASPECT RATIOS B/A 

 

 
FIG. 3 FIRST TEN MODE SHAPES of SLGS FOR A=B=10NM  

In Fig.2, the fundamental frequencies with different aspect ratios are given. Given a special aspect ratio, it is 

observed that the fundamental frequencies are reduced monotonously with increasing of a. For a fixed a, the 

fundamental frequencies are increased with reducing of the aspect ratios. Fig. 2 shows that the fundamental 

frequencies of SLGSs are of the order of 2.2GHz—3.0THz. It will indicate that SLGSs would be employed as 

resonators with broader and higher ranges of sensitivities. In Fig. 3, the first ten mode shapes for a square SLGS with 

width a=b=10 nm are presented. It is clear that the bending modes are the dominant ones when SLGSs are vibrated 

freely. 

3.2 Nonlinear Free Vibration Analysis for SLGS 

Here, the nonlinear free vibration properties of SLGSs with 10a b  nm are analyzed in the following. It is very 

important for investigating the nonlinear free vibration of SLGS system because it determines the dynamic 
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characteristics of the system which can be defined by the amplitude-frequency relations and modes of vibration. 

When the frequency   changes respectively in the neighborhood of 11 ( 1, 1) 0.0691n m     THz and 

13 ( 1, 3) 0.3456n m      THz, the total responses of amplitude of SLGSs are shown in Figs. (4a) and (4b). The 

horizontal axial represents the dimensionless frequency with 11   and 13  . It can be found from Fig. 4 that the 

total mode amplitudes of SLGSs are similar and increase monotonously with increasing the frequency in the 

neighborhood of 11 0.0691 THz   and 13 0.3459 THz  . Furthermore, nonlinear modes of SLGS at 

11 1.18   with increments of 24T  for half-a-cycle are given in Fig. 5, where 2T   . From Figure 5, it can 

be displayed clearly the vibration process of SLGS at the current frequency. 
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(b) 

FIG. 4 RESPONSE of SLGS in the NEIGHBORHOOD of 11 0.0691 THz  (A) AND 13 0.3456 THz  (B) 

 

 

FIG. 5 VIBRATION of SLGS DURING HALF-A-CYCLE at POINT 11 1.18    

4 CONCLUSIONS 

Based on a nonlinear continuum plate model, the linear and nonlinear free vibration properties of single-layered 

graphene sheets are investigated. Firstly, the natural frequencies and the associated linear mode shapes of SLGSs are 
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obtained with the combination of m and n . Besides, the influences of the different aspect ratios on the fundamental 

frequencies of SLGS are explored. Furthermore, the nonlinear vibration properties of SLGS are also analyzed in the 

neighborhood of a given frequency. Parts of results are verified well with experimental observations. 
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Appendix A  

Functions of time 1 2 8, , ,B B B  of Eqs (5) and (6) have long expressions, which are given herein below: 
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In Eqs (8) and (9), 1 2 8, , ,H H H  are expressed as 
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