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Abstract

This paper investigates a class of even order functional differential equations with damped term, and derives two new oscillatory
criteria of solution.
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1 INTRODUCTION

Oscillation of even order functional differential equations has been studied extensively. It is caused by the applications
such as physics, chemistry, phenomena arising in engineering, economy, and science; for example, [1-6]. Recently,
more and more authors have paid their attentions. We refer to the monographs [1, 2]. However, most of the literatures
dealing with equations do not contain the damped term. It seems that very little is known about certain equations with
damped term, (for example, the literatures [3-5]), especially the case of containing distributed deviating arguments. In
this paper, we deal with a class of even order functional differential equations with damped of the form

d = d (1)
O] xO+ [t px(reRam| )+ po] xO + [ etmxlntmam |
108 T ().£X[90. &) (€) =0t 21, >0 (1)

and establish two new oscillatory criteria of solution, where n is an even number, and the following conditions(H) are
always assumed to hold:

(H1) (pt) € C([ty, =), R.), r(t) € C([ty, ), R,), r'(t) > 0,q(t, &) € C([t;, 0), R, ),
C(t,7) e C([ty, ) x[a,b], R, ) is not identically zero on any[t,, ) x[a,b],t, > t;;
(H2) g(t,&) e C([ty, ) x[a,b],R), g(t, &) <t,& e[a, bl .and liminf,_, .., 9(t, &) =00
(H3) f(u,,u,,u;) e C(RxRxR,R) have same sign with u,,u,,u,, when u,u,,u, have same sign;
(H4) o(&) e ([a,b],R) is nondecreasing, the integral of equation (1) is a Stieltjes one.

We restrict out attention to proper solutions of equation (1), i.e to nonconstant solutions existing on[t,o) for some
T >t, and satisfying sup,.; x(t)| >0. A proper solution x(t) of equation (1) is called oscillatory if it does not the
largest zero, otherwise, it is called nonoscillatory.

The following three Lemmas will be needed in the proof of our results:

Lemma 1. [6] Let u(t) be a positive and n times differentiable function on[0,c0) . If u™(t) is a constant sign and
not identically zero on any ray [t,,»),t, >0, then there exists a t, >t and an integer 1(0<1<n),with n+1 even
for u(®u™(t)>0 or n+1 odd for u()u™(t)<0;and for t>t,,

u®u®)>0,0<k<l; D P uu®()>0,I<k<n )

Lemma 2. [7] Suppose that the conditions of Lemma | are satisfied, and then for any constant &< (0,1) and
sufficiently large t, there exists a constant M satisfying
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@)= Mt 1) ®)
Similar to the proof of literature [8], we have

Lemma 3. Suppose that x(t) is a nonoscillatory solution of equation (1). If

) t s

lim L exp(— L p(z)dz)ds = +oo,t > 1, 4)
Then x()x" P (t) >0 , for any large t (5)

2 MAIN RESULTS
Theorem 1. Suppose that
(H5) There exists a function o(t)eC'([t —0,),(0,) satisfying o(t)<g(t,£)<t , 0<c<o't)<1l, and

lim,_ o(t) =oo;

t—oo

(H6) giexists, alnd(;iZCi >0, where ¢, >0 are some constants, i=113. If forany large T
u, u,

[ -umu ] - wa, do(d)

lim sup—
t—ow t

[(t—u) pr((”)) K o

4 ‘i ! Jdu =0 (6)
aM, —— " (u)
y(u)

in which M, is a constant, then every solution of equation (1) is oscillatory.

Proof. We assume that equation (1) has a nonoscillatory solution x(t) . Without loss of generality, we may suppose
that x(t) > 0 for all large t. The case of x(t) <0 can be considered by the same method. From (H1), (H2), and (H3),
there exists a t, >t,such thatx[h(t,77)] >0, f(x(t),&, x[g(t,&)]>0for t>t and & e<[a,b].

Let
2(t) = x(®) + [ oft.m)XIh(E m)]d () W)
Thus equation (1) turns into
(r®z"? ) + pMOE" @) + I:q(t, &) F(x(). &, X9t 5)do() =0,t>t, >0
Then, From (H1), we obtain z(t)>0,z(t)>x() . Using z{)=x() , and from (H6), we can get
f(x(t),&,2[9(t,&)D) > f(x(1),&,X[9(t, &)]) Thus
(r®z"? ) + pMOE" @) + I:q(t, &) F(x(1).&, x[g(t,5)do() <0,t=t, >0 (8)

From the assumption of (H1), we have z[t])>x(t)>0,(r(t)z" " (t)) <0, for t>t, and (r(t)z""(t)) is not
eventually zero, thus, we have

(r®z" ) =r z" ) +r®)z"” () <0 9)
Similar to the proof of Lemma 3, we have z"(t) > 0. Thus from (9), we obtain z”(t)<0 for t>t .

From Lemma 1, there exists a t, >t, and an odd number (0 <1 < n), such that for t>t,
z91)>0,0<k <L(-D*P z2®(t)>0,I<k <n
By choosing k = 1, we have

Z(t)>0,t >t, (10)
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It follows that Lemma 2, there exists a constant M >0and t, >t, such that
z'(%) > Mt0-220) (t),z‘(?) > Mo ()22 (1)
From (H6),z(t) > x(t), we have f(z(t),&,z[g(t.£)]= f(x(1).£, x[g(t,5)]) , thus

(r@)z" P @)+ p®E" 1) + I:Q(t, (@), & 29t &)Dda(§) <0,t>t, >0
Let
t“z D (1)

TOEEEY
el ) €Dty z D (n-1)
P EFCUNTACRE SR TR
22" 2 ) >4
o(t)
af(z[ } 2 Z[ 2 }) K“Pr)z" 1) 1 tr®)z2" @)

Al ) el

In view of (H3) and (H4), and noting that

[at o fw).£ 200t eNdo©) [ a1 0., 200)do(E)

CHEECUNNTHTEY

<[ a(t.o)do(@)

y(t) =

Then we conclude that

We conclude that

® k
‘o t) y(t)

t“r(t)z" P (t)
CHEEEY

ik [P p(t) k (n-2) _k
< t_[aQ(tyf)dG(f) (—= 0 t)y(t) M, (1) y* (t) ")

in which M, :%M (c, +c,c) . From (14), for any large t >t,, we conclude that

J t=w ™y @du < [t-u) e E)do(E)du <)~ (©)

YO <[ gt Edo(@) - (20

—%(clMt‘”’z’ +c,cM a2 ()2 (t)

Ot my _PU) K
J a0 -

_[ ™ -2y U2
J Mt =002 ) Sy

By part integrating, we conclude that
[ -w ™2y @du = (-] (t-u)"y(u)du - y(t,)t -t
Thus

L: _[:(t u)™*u*qu, &)do(£)du < y(t,)(t —t,) ™
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(11)

(12)

(13)

(14)

(15)

(16)



(u) K
) u)y(U)du

[ M-ue " M ) ()y *(u)du

S e wr i o (@du < ye) )

~m-Df] 0" y@)du - [ - - (T

- { JoIm D)™ - - (P -y

+M j (t—u)" 2 ()Y y 2(u)d u}

r(u)

-], [JM (002 @) sy W)

t—u)2 - PN K g
+ r) u — 1 du
\/M (t U)m IG(n 2)( )

r(u)
m-3, K p(u) k 2
1 (t—uw)" u (- u)() ' +m-1]
+— I.L 1 du
L AM, 6 ()
r(u)

Furthermore, we conclude that

[ (- u)g(u,£)do (@)

[(t u) p((“)) K motp
1

rw®

Ju < y(6) (= 3)m '

4M, o2 (u)

Letting t — oo in (16), we find that

KGR (N GRORIIRLE)

-0 PO gy
Y sy a7)
4Mm, ) )a‘" 2 (u)

Which contradicts with (6). This completes the proof of Theorem 1.

Theorem 2. Suppose that

(H7) There exist constant N and « , such that

liminf >a>0,x>N

f(x.y.2)
z

[y| >

(H8) There exists a function p(&) € C([a,b], (0,0)) such that (&) < q(t, &)t >t,, and for any & e[a,b],lim,__ q(t,&)
exists.

If for any large T

limsup

t>o

o= [ A wmu - uy [ e(E)do(d)
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- P Ky
rw "u Jdu = (18)
Wl w

in which 8 and y are some constants, then every solution of equation (1) is oscillatory.

Proof. Suppose that equation (1) has a nonoscillatory solution x(t) >0 . By using the same arguments as in the proof
of Theorem 1, there exists a t, >t; such that x[h(t,7)]>0,

x[g(t,7)]>0, f (x()&, X[9(t,£)]>0 and & e[a,b],z (t)>0,z"(t) >0, for t>t, and there exist constant M >0
and t, >t, such that

()= MU 2200 (), z'(@) >Ma"? ()2 (1) (19)

t“r(t)z" (t)] (20)

w(t) =
40

Then,

t“(r(t)z" P (1)) ktk’lr(t)z(”’l) t 1 t“rt)z" (1))

o (t)=
17 170 2 20

@50

P00~ a9 1 20).£, 49 Do)
&

k 1trt)z"™ 1)(t) O'(t)
+?w(t) 5 [(t)] Z(—)o (t) (21)

C1tr)z"” 1’(t) O'(t)
> z[a(t)] Z(—")o (t) (22)

From x (t) >0, we conclude that lim,__ x(t) =L exists.

t—>o

(@) If L <o, then

I q(t,&) F(z().¢, 2[9(t,S))da(S)

t—)oo Z[G(t)]
2 lim _[ p(&) £ (z(t).S,2[9(t.£)Ddo ()
- I—>oo Z[J(t)]

-2 oo >0 (23)
(b) If L =0, then we conclude that from (H2), (H7) and (H8)

I q(t,&) F(z().¢, 2[9(t,S)N)da(S)
t—>oo Z[G(t)]

> |Ipl|£1f J‘:q(tié) f (Z(t)igizz[g(tig)]) [g(tzig)]do_(f)
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> Iimigf%j:(p(g)do-(f) >0 (24)

Let £ =min {(@), (%)} , for any larget, >t,, we conclude that

[[at.o)t 0. A9t oDdo(&)

0] > B p(&)do(8) (25)
2
Furthermore, from (H4), we conclude that
B (O L O N0 N PV ST (26)
2 r(t)

2 _o(t) 2
Z[2]

in which M, :%Mc , then

o <At [ oo - R o -Im, 1o L (27)

»——<0 ——
rig) t 2 °r() r(t)

The remainder proof is as same as proof of Theorem 1, we omit it. This completes the proof of Theorem 2.
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