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Abstract 

In this paper, we prove the existence and uniqueness for Backward Stochastic Differential Equations with stopping time as time 

horizon under the hypothesis that the generator is bounded. We first prove for the stopping time with finite values and for the 

general stopping time we prove the result taking limit. We suggest a new approach to generalize the results for the case of 

constant time horizon to the case of stopping time horizon. 
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1 INTRODUCTION  
Linear backward stochastic differential equations (BSDEs) were introduced by Bismut[1] as the adjoint equations 
associated with stochastic Pontryagin maximum principles in stochastic control theory. The general case of non-
linear BSDEs was then studied by Pardoux and Peng. (see [2] and [3] in the Brownian framework). In [3], they 
provided Feynman-Kac representations of solutions of non-linear parabolic partial differential equations (PDEs). In 
the paper by El Karoui et al.[4], some additional properties are given and several applications to option pricing and 
recursive utilities are studied.  

The case of a discontinuous framework is more involved, especially concerning the comparison theorem, which 
requires an additional assumption. In 1994, Tang and Li[5] provided an existence and uniqueness result in the case of 
a natural filtration associated with a Brownian motion and a Poisson random measure. In 1995, Barles, Buckdahn 
and Pardoux[6] provided a comparison theorem as well as some links between BSDEs and non-linear parabolic 
integral-PDEs, generalizing some results of [2] to the case of jumps. In 2006, Royer[7] proved a comparison theorem 
under weaker assumptions, and introduced the notion of non-linear expectations in this framework.  

Since then BSDEs have been widely used in mathematical finance and partial differential equations (PDEs). Many 
pricing problems can be written in terms of linear BSDEs or non-linear BSDEs when portfolios constraints are taken 
into account (see, e.g., El Karoui et al.[4], A. Bensoussan[8], I. Karatzas[9], and B. Wang and Q. Meng[10],). And 
numerous results show the intimate relationship between BSDEs and PDEs, which suggests that existence and 
uniqueness results which can be obtained on one side should have their counterparts on the other side.  

Many mathematician have worked to improve the existence / uniqueness condition of a solution for BSDEs in 
connection with the specific applications. 

Most of those works are concerned with the case of constant time horizon. But in many applications we encounter 
the case of random time horizon. For example, Marcus and V´eron[11] show that the solutions to 

qu + u u 0PDE −D =  are related to the BSDE q
t r r r rt t

Y Y Y dr Z dW
t t

ξ= − −∫ ∫  . Here the time horizonτ is a 
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stopping time. And in the finance, there are many cases when the time horizon is not constant but random. There are 
many research papers about the case of random time horizon in connections with applications[12]. 

But those works on the case of random time horizon were limited to their specific settings and there hasn’t been a 
general approach to deal with BSDEs to stopping time horizon. A stopping time is a very special random variable 
and many work shows that it can be treated as a constant. (Doob’s Optional Sampling Theorem is a very nice 
example.) 

In this paper, we prove the existence and uniqueness for BSDEs to stopping time horizon. Actually we suggest a new 
method to generalize the results for the case of constant time horizon to the case of stopping time horizon. We note 
that our method is very simple and clear, and it can be used in many applications. 

The paper is organized as follows. In section 2, we quote existence and uniqueness results for the case of constant 
time horizon. In Section 3, we prove the existence and uniqueness for the case of finite value stopping time horizon. 
In Section 4, we generalize the existence and uniqueness to the case of bounded stopping time horizon.  

2 TO CONSTANT TIME HORIZON 
In this section we quote existence and uniqueness results for the case of constant time horizon. We follow the 
terminology in [13]. 

Let ( )PΩ， ，  be a probability space on which is defined a d-dimensional Brownian motion ( )t: =  : t < TW W . 

Let us denote by ( )W
t : t T<  the natural filtration of W and ( )W

t : t T<  is completion with the P -null sets of . 

We define the followiing spaces: 

 n the set of t-progressively measurable, n-valued processes on [ )0,TΩ×   

 ( ) ( ){ }22
t t  -measurable random? -valued variable s.t.: :n

nR Eη η= < ∞     

 ( ) ( ){ }22 with continuous paths, s.t.0, : supn n t T tS T Eϕ ϕ<= ∈ < ∞   

 ( )22

0
{  s.t. Z }

T

n n sZ E ds= ∈ < ∞∫    

 ( )
1
221

0
: {  s.t. Z }

T

n n sZ E ds
 

= ∈ < ∞ 
 
∫    

Let us now introduce the notion of multi-dimensional BSDE.  

Definition 2.1. Let ( )2
n Tξ ∈   be a mR -valued terminal condition and let g be a nR -valued generator, 

( )m m d
m R R ×⊗ ×  -measurable. A solution for the m-dimensional BSDE associated with parameters ( ),g ξ  is a 

pair of progressively measurable processes ( ) ( )2 20, , 0,m m dY S T Z T×∈ ∈ such that 

 ( )
t

, , ,       0
T T

t s s s st
Y g s Y Z ds Z dW t Tξ= + − ≤ ≤∫ ∫   (2.1) 

The differential form of this equation is 

 ( ), , , .t t t t t TdY g t Y Z dt Z dW Y ξ− = − =
   

Hereafter g is called the generator and ξ  the terminal value of the BSDE. 

Under some specific assumptions on the generator g , the BSDE (2.1) has a unique solution. The standard 
assumptions are the following:  
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(i) ( )( ) 2,0,0 : ;mg t t T≤ ∈                                                              
(ii) g is uniformly Lipschitz with respect to ( ),y z : there exists a constant 0C ≥  such that 

( ) ( ) ( ) ( ), , , , , ', ' ' ' , ', , 'g t y z g t y z C y y z z for y y z zω ω− ≤ − + − ∀
 

Theorem 2.1 (By Pardoux and Peng [2]). Under the above standard assumptions (i) and (ii), there exists a unique 
solution ( ), ZY  of the BSDE (2.1) with parameters ( ),g ξ  . 

3 TO FINITE VALUE STOPPING TIME HORIZON 
In this section we prove the existence and uniqueness for the case of finite value stopping time horizon. 

Lett be a ( )t -stopping time that takes finite number of values. Without loss of generality assume thatt > 0. The 
following lemma shows the condition for a random variable with finite values to be a stopping time. 

Lemma 3.1. Let t be a positive random variable on ( ), , PΩ  with finite values. That is 

( )
1

:
n

i i
i

a At χ
=

= ⋅∑ ,     0 i na a< < < < ∞  

Thent is a ( )t -stopping time if and only if for any ,
kk ak A ∈  and

1 k

n
i ai k

A
= +

∈∑  . 

Proof. ( )⇒ Ast is a stopping time, for 1k∀ >   

{ }
1

k

k

k i a
i

a At
=

≤ = ∈∑     and  { }
1

1

1
1

k k

k

k i a a
i

a At
−

−

−
=

≤ ∈ ⊂∑    

So, 
1

1 1
\

k

k k
k i i ai i

A A A−

= =
= ∈∑ ∑  . And 

1 k

k
i ai

A
=

∈∑  implies that 
1 1

\
k

n k
i i ai k i

A A
= + =

= Ω ∈∑ ∑  . 

( )⇐ Clear. 

And furthermore ,
kk aA k A At∈ ⇔ ∀ ∩ ∈  . In fact { },

kk ak A at∀ ≤ ∈  implies 

{ } { }( ) { }( )1\
kk k k k aA a A a A a A At t t −= = ≤ ≤ = ∈      

and the inverse is clear. 

Now consider a BSDE to a stopping time horizon with finite values. 

( )
t

, , ,     0 .t s s s st
Y g s Y Z ds Z dW t

t t
ξ t= + − ≤ ≤∫ ∫                                      (3.2) 

Theorem 3.1. Let t be a ( )t -stopping time that takes finite number of values and ( )2
M tξ ∈   , 

[ ]: 0, m m d mg R R Rt ×× × →  be ( )m m d
m R R ×⊗ ×  -measurable. Then under the assumptions 

(i) ( )( ) 2,0,0 : mg t t t≤ ∈   

(ii) g is uniformly Lipschitz with respect to ( ),y z : there exists a constant 0C ≥  such that 

( ) ( ) ( ) ( ), , , , , ', ' ' ' for , ', , 'g t y z g t y z C y y z z y y z zω ω− ≤ − + − ∀  

there exists a unique solution ( ), ZY of the BSDE (3.2). 

Proof.Let ( )1

n
i ii

a At χ
=

= ⋅∑ ,where 0 i na a< < < < ∞ .If we set 0 0a = ,
n

k ii k
B A

=
=∑  

and ( ]1,k k k kE B a a−= ×  , then
1kk aB
−

∈  by the Lemma 3.1. And 
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( ) ( ) ( ) ( ) ( ) ( )1
1 1

    see Figure 1 .
n n

i i i i i
i i

s s a A a s a Bχ t χ χ χ χ−
= =

≤ = ≤ ⋅ = < ≤ ⋅∑ ∑  

Then 

 

 
FIGURE 1：DOMAIN OF BSDE 

( ) ( )

( ) ( )

( )
1

1
1

1
1

1

i

i

n

s s i i i s st t
i

n

i i i s st
i
n t a

i s st a
i

Z dW a s a B Z dW

a s a B Z dW

B Z dW

t
χ χ

χ χ

χ
−

∞

−
=

∞

−
=

∨

∨
=

= < ≤ ⋅ ⋅

= < ≤ ⋅ ⋅

= ⋅

∑∫ ∫

∑∫

∑∫

 

Likewise 

( ) ( ) ( )
11

, , , ,i

i

n t a

s s i s s st t a
i

g s Y Z ds B g s Y Z dW
t

χ
−

∨

∨
=

== ⋅∑∫ ∫  . 

So the original equation can be written as 

( ) ( ) ( ) ( )
1 11

+ , ,i i

i i

n t a t a

t i i s s s i s st a t a
i

Y A B g s Y Z dW B Z dWξ χ χ χ
− −

∨ ∨

∨ ∨
=

 = ⋅ ⋅ − ⋅  ∑ ∫ ∫  

Now we “contract” the space as following. Consider kB  as a space and define algebraσ −  on kB  

by { }: | Ak
kA B ∈   . And define the probability measure by ( ) ( )

( ): k

P Ak k
P B

P A B =  and filter by 

{ } ( ]{ }1: | A ,        F : : ,k k k
t k t t k kA B t a a−∈ = ∈    . 

These elements are all well-defined and we get a new basis ( ), , , Fk k k
kB P   . If we set 

( ) ( ) ( ) ( ]
1 1: ,      ,     , ,

k

k
t t a k k kW W W B t a aω ω ω ω

− −= − ∈ ∈  

( )k
tW ω  becomes a d -dimensional Brownian motion on the new basis. In fact 
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 
1

0
k

k
aW

−
=  ; 

 If 1k ka t s a −≥ > >  , then  

( ) ( ) ( )
1 0,     

k

k k k k
t s t s sA B B

k

W W dP W W dP A
P B

− = − ⋅ = ∀ ∈∫ ∫


  , 

Where
1

,
kk a s sB B
−

∈ ⊂ ∈    . So 

( )|k k k k
t s sE W W=       a.s., 

Where kE  means an expectation under kP  ; 

 ( ) ( )0,t sW W t s− −   and for c R∀ ∈ , 

( ) { }( )
( )

{ }( ) ( )
( )

{ }( );

k k k k k k
t s k t s kk k k

t s
k k

k k k
t s

P W W c B P W W c P B
P W W c

P B P B

P W W c

− ≤ − ≤
− ≤ = =

= − ≤

 

 

Now we define n BSDEs on new bases and verify the condition for existence and uniqueness. 

 On ( ), , , Fk k k
kB P  . Set ( ):n

nAξ ξ χ= ⋅  and consider  

( ) 1t
, , ,     an na an n n n n

t n s s s s n nt
Y g s Y Z ds Z dW t aξ −= + − ≤ ≤∫ ∫ . 

Then nξ is
n

n
a -measurable and square integrable. And g satisfies conditions for existence and uniqueness for the 

case of constant time horizon. 
 On ( ), , , F ,k k k

kB P k n< . Set  

( )
1

1

, ;         
:

, \ .
k

k kk
k

a k k k

A A
Y B A B
ξ χ ω

ξ
ω+

+

⋅ ∈=  ∈ =
 

and consider 

( ) 1t
, , ,     a .k ka ak k k k k

t k s s s s k kt
Y g s Y Z ds Z dW t aξ −= + − ≤ ≤∫ ∫  

Then ( )2
k

k k
m aξ ∈  . In fact{ } { }( ) { }1

k

k k
k at A t Y tξ ξ +

+≤ = ≤ ≤  and { } ( )
k

k
k a tA tξ ξ≤ ∈ ∈    . 

So { } { }( )
k

k
k k k aA t A A tξ ξ≤ = ≤ ∈     . And { } { }1

1 1 1 1=
k k k kk l

k k k k k
a l N a a a aY t Y t

+

+ + + +
+ ∈ +≤ ∩ ≤ ∈ = ⊂    shows 

that kξ is
k

k
a -measurable. On the other hand. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )1

22 2 1

2 12 1 11

k
k k k

k
k

k k k k k
aB A B

kk k k
aB

k k

P dw P dw Y P dw

P B
P dw Y P dw

P B P B

ξ ξ

ξ
+

+
+

++ +
+Ω

= +

< + < ∞

∫ ∫ ∫

∫ ∫
 

So ( )2
k

k k
m aξ ∈  and similarly one can verify that g satisfies conditions for existence and uniqueness for the case of 

constant time horizon. 

Now we combine the solutions{ }, Zk k
t tY  and set 
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( ) ( ) ( )

( ) ( ) ( )

1 1

1

, : ,

, : .

cn n
k

t k k
k k

n
k
t k

k

Y t Y E E

Z t Z E

ω ω χ ξ χ

ω ω χ

= =

=

  = ⋅ + ⋅      

= ⋅

∑ ∑

∑
 

Then ( ),Y Z becomes a unique solution of the BSDE(3.2). In fact 

 For any t , let the interval containing it be ( ]1,k ka a− , then  

{ } { }( ) { }( ) { }( ) { }( ) ,     .c c k
t t k t k t k k tY c Y c B Y c B Y c B c B c Rξ≤ = ≤ ≤ = ≤ ≤ ∈ ∀ ∈        

 We can write 

( )
( )

t

1

t

,                                                        ;        

, , ,    ;        

, , , \ .

k k

k k

k

c
k

a ak k k k
t s s s s kt

a ak k k k k
a s s s s k kt

B

Y g s Y Z ds Z dW A

Y g s Y Z ds Z dW B A

ξ ω

ξ ω

ω+

 ∈
= + − ∈

 + − ∈

∫ ∫
∫ ∫

 

So using ( )1 11 1 1 1 1, ,k k

k
k k

a ak k k k k k
a s s s sa a

Y g s Y Z ds Z dWξ + ++ + + + += + −∫ ∫  , we can easily check that 

( )
t

, ,t s s s st
Y g s Y Z ds Z dW

t t
ξ= + −∫ ∫  

If the equation(3.2)has another solution, its restriction to kE becomes a solution on ( ), , , Fk k k
kB P  and this 

coincides with ( ),k k
t tY Z . 

4 TO BOUNDED STOPPING TIME 
In this section we generalize the existence and uniqueness to the case of bounded stopping time horizon. 

First we show a lemma which is useful for argument of limitation 

Lemma 4.1. Let ( )2
M tξ ∈   , [ ]: 0, m m d mg T R R R×Ω× × × →  be ( )m m d

m R R ×⊗ ×  -measurable and be a 
solution of the following BSDE tot ： 

( )
t

, , ,     0 .t s s s st
Y g s Y Z ds Z dW t

t t
ξ t= + − ≤ ≤∫ ∫  

Then for any positive real number β , we have the following inequality. 

 ( ) ( )
2

1

1 2
1

2 22 s,Y , Zt
t s t

t t s st
Y Y E g e dsβ

β
− 

− ≤  
 
∫                                           (4.3) 

Especially (Yt) is almost continuous in t. 

Proof. Just from the equation 

( )

( ) ( )

( )

1
1 1

2 2

2 2 1 1

2 2

2
1 1

1 2

, ,

, , , ,

, , ,        ,

t s s s st t

t t

s s s s s s s st t t t

t t

t s s s st t

Y g s Y Z ds Z dW

g s Y Z ds Z dW g s Y Z ds Z dW

Y g s Y Z ds Z dW t t

t t

t t

ξ

ξ

= + −

= + − + −

= + − ∀ <

∫ ∫

∫ ∫ ∫ ∫

∫ ∫
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and we can write for all ( ) ( )2 2

21 2, , , ,
t t

t t s s s st t
t t t Y Y g s Y Z ds Z dW∈ = + −∫ ∫ . Now we apply Ito’s formula 

to ( )1

1 2

2 s t
t tY Y eβ −− in[ ]1 2,t t and we get 

( ) ( ) ( )

( ) ( )

1 1

1 2 1 2 1 2
2

1 1

1 2
2

2 222 , ,

2 ,

t s t
t t t t s s s t tt

t s t
t t s st

Y Y Y Y g s Y Z Z Y Y e ds

Y Y Z e dW

β

β

β −

−

 − − = − − + + −  

+ −

∫

∫
 

taking conditional expectation with respect to
1t
 in both sides 

( ) ( )( ) ( ) ( )( )
( ) ( )

1 11

1 2 1 2 2
2 2

1 1

1 2
2

2 2 2

2 2

   2 , ,

2 , , ,
2

t t

t

t ts t
t t t t s s t s st t

t s t
t t s st

Y Y e Y Y Z e dt e Y Y g s Y Z ds

e Y Y g s Y Z e ds

β

β

β

β
β

−

−

− + − + = −

  
≤ − +  

  

∫ ∫

∫

 


 

So we get 

( ) ( )
2

1

1 2
1

2 22 s,Y , Zt
t s t

t t s st
Y Y E g e dsβ

β
− 

− ≤  
 
∫  

and it proves the first assertion. 

And because g and ( )1s teβ −  are both bounded in [ ]1 2,t t  , taking expectation in both sides, we 
get 0D∃ >  , ( )1 2

2 2
2 1t tE Y Y D t t− ≤ ⋅ − , and by Kolmogorov’s continuity theorem there exists a continuous 

version of ( )tY . 

Now we state the main result of this paper. 

Theorem 4.1. Let t be a bounded ( )t -stopping time and ( )2
M tξ ∈   , [ ]: 0, m m d mg R R Rt ×× × →  be 

( )m m d
m R R ×⊗ ×  -measurable and bounded. Then under the assumptions 

(i) ( )( ) 2,0,0 : mg t t t≤ ∈   

(ii) g is uniformly Lipschitz with respect to ( ),y z : there exists a constant 0C ≥  such that 

( ) ( ) ( ) ( ), , , , , ', ' ' ' , ', , 'g t y z g t y z C y y z z for y y z zω ω− ≤ − + − ∀  

there exists a unique solution ( ), ZY of the BSDE 

( )
t

, , ,     0 .t s s s st
Y g s Y Z ds Z dW t

t t
ξ t= + − ≤ ≤∫ ∫  

Proof. Let ( )nt be a decreasing sequence which converges tot . Actually for bounded stopping timet , we can 
always take 

0

1 1
2 2 2n n n n

k

k k kt χ t
∞

=

+ + = ≤ ≤ 
 

∑  

and it’s clear that this is a sequence of stopping times. 

For each n , from Theorem 3.1 there exists a unique solution ( ),n n
t tY Z of the equation 

( )
t

, ,n nn n n n
t s s s st

Y g s Y Z ds Z dW
t t

ξ= + −∫ ∫  

then 
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( )
( ) ( )
( )

t

t

t

, ,

, , , ,

, , ,

n n

n n

n n n n
t s s s st

n n n n n n
s s s s s s s st

n n n n
s s s st

Y g s Y Z ds Z dW

g s Y Z ds Z dW g s Y Z ds Z dW

Y g s Y Z ds Z dW

t t

t t t t

t t

t t

t

ξ

ξ

= + −

= + − + −

= + −

∫ ∫
∫ ∫ ∫ ∫
∫ ∫

 

and ( ),n n
t tY Z can be considered as a solution of BSDE with nYt as a terminal variable. (Note that 
( ) ( )2 2

nM Mt tξ ∈ ⊂     ), so for any m n> , 

( ) ( )( ) ( )
t

, , , ,m n m n m m n n m n
t t s s s s s s st

Y Y Y Y g s Y Z g s Y Z ds Z Z dW
t t

t t− = − + − − −∫ ∫  

Now we apply the famous Ito’s formula to ( )2 s tm n
s sY Y eβ −−  in[ ],t t , and we get 

( )

( ) ( ) ( )

( ) ( )( )

2 2

2 2

t

   

2

2

tm n m n
t t

s tm n m n m n m n
s s s s s st

s t m n m n
s s s s s

Y Y e Y Y

Y Y g g Y Y Z Z e ds

e Y Y Z Z dW

β t
t t

t β

t β

β

−

−

−

− − −

 = − − − + − + −  

+ − −

∫

∫

 

where ( ) ( ), , , , ,m m m n n n
s s s sg g s Y Z g g s Y Z= = . Multiplying eβt to the both sides and taking expectation, we get 

( )( )
( ) ( )( )( )
( )
( ) ( )

2 2 2

2

2 2 2

t

22 2 2 2

t

  

2

2
2

4
2

t m n m n m n s
t t s s s st

m n m n m n s
s st

m n m n m n s
s s

m n m n m n m n s
s s s s s s

e E Y Y E Y Y Z Z e ds

E Y Y e E Y Y g g e ds

E Y Y e E Y Y g g e ds

CE Y Y e E Y Y Y Y Z Z e ds

tβ β

tβt β
t t

tβt β
t t

tβt β
t t

β

β
β

β
β

− + − + −

= − + − −

  
≤ − + − + −  

  
  

≤ − + − + − + −  
  

∫

∫

∫

∫

 

If we set ( )2
0 16 1 Cβ = +

, the above inequality implies the following one. 

( ) ( )0 0 0
2 2 2 21

4
t sm n m n m n m n

t t s s s st
e E Y Y E Y Y Z Z e ds E Y Y e

tβ β β t
t t− + − + − ≤ −∫  

On the other hand, the right side of the above inequality satisfies 

( ) ( ) ( )( )0 0 0
2 22 2

2
m n

m n m n m m n nE Y Y e E Y Y e E Y Y Y Y eβ t β t β t
t t t t t t t tξ ξ− = − + − ≤ − + −  

by the Lemma 4.1 and it gets very small as n →∞ because of the continuity of solution. 

So ( ),n n
t tY Z becomes a Cauchy sequence in the space ( ) ( )2

1 0,m d t× + equipped with a norm 

( ) { }
1
22

0
: s

sX E X e ds
t β

β
= ∫  

and converges to certain pair ( ),t tY Z . And it’s clear that this becomes the unique solution of our main equation. 
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