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Abstract 

Binomial no-arbitrage price have a method is the traditional approach for derivative pricing, which is, the complete model, which 

makes possible the perfect replication in the market. Risk neutral pricing is an appropriate method of asset pricing in a complete 

market. We have discussed an incomplete market, a non - transaction asset that produces incompleteness of the market. An 

effective method of asset pricing in incomplete markets is the undifferentiated pricing method. This technique was firstly 

introduced by Bernoulli in (1738) the sense of gambling, lottery and their expected return. It is used to command investors' 

preferences and better returns the results they expect. In addition, we also discuss the utility function, which is the core element of 

the undifferentiated pricing. We also studied some important behavior preferences of agents, and injected exponential effect of risk 

aversion in the model, so that the model was nonlinear in the process of claim settlement. 

Keywords: Complete Market Model; Option Pricing; Nonlinear Pricing Formula; Risk Natural Measure; Expected Utility and 

Indifference Pricing 

1 INTRODUCTION  

The fundamental principle of pricing theory is that there is no arbitrage opportunity in the ideal financial market. In 

the real world, arbitrage opportunities do exist, but only in a short period of time. In the pricing of derivatives, we 

usually distinguish between complete and incomplete markets. A market is called complete, if every request can be 

perfectly copied, that is to say, investors can establish a portfolio at zero time and have a suitable trading strategy, 

which makes it possible to reproduce the benefits of mussel when the time is ripe. In a complete market with no 

arbitrage hypothesis, the price of any claim on the market is uniquely determined as the value of its duplicated 

portfolio. A simple example of a complete market (see Steven E. Sharive “Calculus I" Chapter I) includes the one 

period binomial model with a risky asset and a money market account, where the rate for interest is zero. A simple 

example of a continuous time model is the standard Black - Scholes model, and its bonds and risky asset stocks are 

modelled as diffusion. Every time someone wants to copy a claim perfectly, there are two ways to find its value. 

First, one can copy the related replication strategy with the number of tradable asset units required for zero time and 

maturity. Using the recursion of replication strategy at the price of zero time and tradable assets, it can then easily 

calculate the value of the duplicated portfolio. Secondly, those who only want to price claims, rather than copy it, 

can ignore things and apply the basic theorem of asset pricing (FATP) instead of the first mentioned method. One of 

the important statements of the (FATP) is that under the nonexistence of arbitrage, there exists measure which is 

equivalent to the real world measure. Under this assumption, all tradable asset markets in the discounted price 

process are martingales. As an important formula, the value of the claim can be recursively calculated in the 

backward time as (1.1) 

                              
    0C E C T

                             
(1.1) 

where, for the sake of simplicity, we assume that the interest rate is constant. The interesting matter for a complete 

market is that the equivalent martingale measure is unique, the price of the claim is uniquely determined by the 

formula (1:1), and it's also called the law of one price. The whole market is a frictionless market, so it is possible to 
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borrow money from the money market account at the same rate at the same loan. 

A market is called incomplete market, and certain claims can not be completely hedged. The measures to price 

derivatives in incomplete markets are no longer the only one. The claim price cannot be determined by the law of 

one price. An example of an incomplete market is the undifferentiated pricing in a single period binomial model. By 

definition, any binomial model contains a non - negotiable asset that makes the market incomplete. Most markets are 

not entirely due to nontradability assets or market frictions. The complete market is the ideal approximation of the 

incomplete market. In incomplete markets, derivative pricing is not the only method. Since this not unique, the 

investor has to make a decision to choose which measure is appropriate. The investor's choice for 

appropriatedepends on his risk preference. Pricing in incomplete markets is difficult. There are many methods, such 

as super replicas, minimal martingales, and convex risk measures. Super duplication is a portfolio that determines or 

exceeds the maturity of the time to a certain extent. A powerful pricing method in incomplete markets, the utility 

undifferentiated pricing method. It is derived from the practicality of actuarial mathematics. The advantage of utility 

indifference pricing is that it carries out an economic argument, and it relies on exponential utility to make the price 

nonlinear. Exponential utility has the ability to calculate the initial wealth and endowment, which makes 

mathematics easy to understand. In indiscriminant pricing, most people prefer more wealth rather than less wealth. A 

person can maximize his relative expectation of money endowments. The apathy pricing method is the relativity 

between the content of Bernoulli (1738) and the calculation of a person's expected utility evaluation instead of the 

currency outlook. This method has the logical consistency of standards and economic rationality, by Von Neumann 

and Morgenstern (1944) based on the structure of investors preference, and expand the Barbarians (1972), no 

difference in pricing is the risk appetite of the agent's expected utility representation. The rest of this arrangement, 

Section 2: a complete phase model, the 3 part: Discussion of incomplete phase binomial model and nonlinear price 

formula, the 4 and the 5 section is the main part of this paper, the 4 part is about the convex risk measure, the 5 part 

is about the two limit price behavior and their indifference with the expected utility, the last part is the conclusion. 

2 COMPLETE ONE PERIOD MODEL 

2.1 The Extraction of Emotional Information 

A complete periodic model is a periodic binomial model. Simply speaking , the model is consist of two tradable 

assets; a riskless asset, which is money market account, called bond, denoted by B , and a risky asset, called stock, 

denoted by S  . The two assets are traded at times 0 and at maturityT  . This key has a unit initial value, with a 

constant interest rate. The horizon for time  0,T  , the riskless asset, costs 1TB r   . But in this model, for the 

sake of simplicity, we assume that the interest rate is 0r   so that the bond cost at maturity is still 1TB  . 

Probabilistic spatial description of the randomness of risk assets  , ,T P , where the random elements from 

 1 2,   . The branching probability for the model are  1: 0P P    and  2q : 1 p P     , 

and 2T

  . TS is random variables on   , 0TS S   with 

  1

2

,if ;

,if ;{
u

d

 

   


 

and the 0 1d u    condition for arbitrage-free should be satisfied. 

Let C  be a contingent claim written on S  with payoff TC  . We have a European call option written on the asset 

S with an expiration data T and strike price K . One of the pricing methods of this model is replicating. Each claim 

can be copied into a complete model.  In fact, we have a function of  ,   is the portfolio of this model, 

where is the number of shares of the stock S and units of the bond B  . In order to solve it for the (dynamic) 

portfolio of claim, by trading between stock and bond, we have: 

   T TS C    
   1 2,  

 

In order to illustrate a step in the graph of this binomial model, we can distinguish from the geometric interpretation 

to avoid arbitrage in this model, 0 0C S    should be zero. The model shows that, since there are two 



 

- 8 - 

www.ivypub.org/mc 

equations and two unknowns in the model, the two unknowns can be easily solved. 

It is easy to solve the system for one of the unknowns, either or, we have 

   

   

   

 
1 2 1 2

1 2 0

T T T T

T T

C C C C

S S S u d

   


 

 
 

 
                

（2.3） 

   1 2T TuC dC

u d

 





                         
(2.4)

 
According to the law of one price, we get the price of 0C  the claim; we can find the price of by recursiveness 

backward in time. It is the cost of the portfolio   at time 0t   . We put 0 instead of T in the above equations 

(2.3) and (2.4), we have 

       1 2

0 0

1 1T Tu C d C
C S

u d

 
 

  
  

                         
(2.5)

 
Formula (2.5) shows that the claim TC  can uniquely be hedged by the portfolio  ,   , and all the risk for 

writing the claim TC  can be completely eliminated by the following hedging portfolio. We set the probabilities p~  

and q~  to 

1 d
p

u d




  

1 d
p

u d





 

For 0C  we can write in this form 

In formula (2:6) the expectation E is risk neutral expectation, under the risk neutral probability p~  and q~  , where 

it called a risk neutral valuation for a claim. We have constant rate interest in the model. 

3 IN COMPLETE ONE PERIOD MODEL. 

From the definition of the incomplete market, we can point out that every claim cannot be perfectly replicated by a 

(dynamic) portfolio. All risks cannot be eliminated from the strategy. This is the case in most real markets, based on 

market friction and non-trading assets. 

3.1 Model Set-up. 

The first phase of the binomial model in the market environment, a riskless asset and risk assets. At present, the 

interest rate of the model is zero, but in general, it can be added to the model. From the two risk assets in the market, 

one kind of asset is traded, and the second types of risk assets are non tradable, which means the incompleteness of 

the model. The riskless asset is B0 = BT = 1. The two risky asset S and Y are given by 

0TS S  ,u d   0 1d u                               (3.7) 

0TY Y ,u d   ,u d    

The randomness of assets S  and  Y  are given by the probability space  , ,T P  , we have 

 1 2 3 4    and    0 1 4 , 2i TP i    
 

 1 0

u

TS S  ,  1 0

u

TY Y  ,  2 0

u

TS S  ,  2 0

d

TY Y  , 

 3 0

d

TS S  ,  3 0

u

TY Y  ,  4 0

d

TS S  ,  4 0

d

TY Y  , 

where the measure P  represent the historical probability measure, in which the   -algebra T  is agree with the  

 -algebra 
 ,S Y

T is generated by random variables TS  and TY  . We can see that the  -algebra
 S

T  is also 

generated by random variables TS  . 

3.2 Utility Indifference Pricing 
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Utility Indifference pricing method is portfolio optimization. Let us suppose that, we want to price a contingent 

claim with random payoff
TC  , the underlying assets are a money market account and two risky assets, and we have 

stochastic processes on a filtered probability space  , ,T P  . 

Let  U  be a Utility function measure investor preference in probability space. In general, it is assumed that the 

utility function  U  is increasing, because any investor in the market is willing to have more wealth than less 

wealth. And utility function U   is strictly concave because the investor is risk averse. When using a utility 

indifference pricing, we compare two scenarios that are, "to invest in the claim" versus "do not invest in the claim". 

Suppose that,  
TC  be a claim written on S and Y   in a probability space  , ,T P  . Due to incompleteness, in 

general for TC   may have different method of valuation. The definition of utility indifference pricing based on 

exponential utility:  

  xU x e    , x  

where 0   . That  U x  twice continuously differentiable ' 0U   and '' 0U   so U  satisfies the definition 

for utility function. 

Let  ,    be a combination includes of   shares of the traded risky asset S  , and   units the riskless 

asset B . Its initial value 0X x   is given by 0S x    , and it value at time T   is given by 

 0T T TX S x S S      
                             

(3.8) 

where TX  it is the wealth of the initial wealth  . The value of the function of the claim TC   in term of 

exponential utility U  is defined by, 

            0s u p s u p E T TT TT
x S S CX CC P P x p

T TV X E U X C E e e e
  



                     (3.9) 

Here, we will define the undifferentiated price of the buyer and seller in the above definition. If one has P  dollars,  

invest in the money market and the stock market.  The utility indifference buyer price 
bp  is the price at which 

the4 investor is indifferent (in the sense that his expected utility under optimal trading is unchanged)[1] between 

paying nothing and note having the TC   and paying now to receive the claim 
bp at timeT  . The price of the 

buyer is 
bp  , which is the solution to the problem 

 
 

    , ,0bV x p k k V x                                 (3.10) 

Similarly, the utility undifferentiated seller price 
sp   tis the minimum amount that an investor is willing to accept 

for the sale of the claim TC . That is,  
sp  is the solution to 

     , ,0sV x p k k V x  
                            

(3.11) 

where k is number of units of claim TC  . 

Definition 3.1. The indifference price of the claim  ,T T TC c S Y  is defined as the amount of  TC  for which 

the two value function TC
V  and

0V  , defined in (3.9) and corresponding, respectively, to the claim TC  and 0  

coincide and for the amount  TC  we have 

    0 TC

TV x V x C                               (3.12) 

The initial wealth is x  from R . In this definition, investors don't care about paying anything from his wealth 

without having the TC  , and paying  TC of his wealth to receive the claim TC  at T . 

Remark 3.1.  In classical no arbitrage pricing theory a complete market model gives the price of a claim TC  as 

   p

T TC C E C under the assumption that the interest rate is zero. Where p~  is risk neutral measure, under a 

unique risk neutral measure, the price is a linear function of the expected (discounted) income, called the martingale 

measure. However, in a incomplete model, this situation is no longer true: the claim price in a incomplete market is 

no longer a linear function of the expected discount revenue under a unique equivalent martingale measure. The 

valuation of the function is not linear, and it is an equivalent measure of incomplete market pricing. We want to look 

for an equivalent measure of an incomplete market model, and we look back at the formula and use zero interest 

rates. 

     Q

T TC C C ,                                     (3.13) 
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where the 
Q  is a nonlinear functional and Q is an equivalent martingale measure. The advantage of this formula is 

that, the prices are expressed in one measure. However, for (3.13) to hold some regularity property should hold. 

Remark 3.2. Consider two special cases: 

(a).   T TC c S ; 

(b).   T TC c Y . 

In first case (a), the randomness of asset Y which is nontraded asset in this market has no effects on the price of the 

claim TC  at all. Therefore, the classical no-arbitrage pricing method, which is risk neutral method applicable to the 

claim for pricing     p

T Tc C E c S     .
 So the indifference pricing method is turning into no-arbitrage price. 

In second case (b), we assume that the two assets ( TS and TY  ) are independent under the historical measure P so the 

value for 
 TT

c YC
V V  nontrade asset is reduced to: 

Recall definition (3.10), it becomes 

       0supE TT T x S Sc Y c Yx P PV x e E e e




      
   

                 (3.14) 

It is straightforward from (3.14) to substitute zero instead of  Tc Y , because TY is a nontrade asset 

   00 supE Tx S Sx PV x e e




     
 

                      (3.15) 

Putting together (3.14) and (3.15) , 
 Tc Y

V  becomes 

       0 ET Tc Y x YPV x V x e
 

 
                     (3.16) 

We notice that, by definition (3.8),  is the solution to the following system: 

       0 Tc Y

TV x V x c Y 
 

     0 E Tx YP

TV x c Y e


   
 

 

      0 ET T
x c Y x YPV x e e

    
 

 
    

ET T
x c Y x YPe e

    
 

              

Consequently, it becomes 

    1
log Tc YP

Tc Y E e





 
 

                     (3.17) 

From formula (3.16), we can simplify the undifferentiated price to the principle of actuarial valuation, that is, the 

equivalent value of certainty. When the P  measure of history is used as a pricing method, the income is nonlinear. 

Remark 3.3. Consider the claim TC  , decompose in the following way 

   1 2T T TC c S c Y  ; 

In this case, it may lead to wrong ideas, to price the above claim as first pricing the claim 
 1 Tc S

 by traditional 

no-arbitrage risk neutral valuation method, and then pricing the claim  2 Tc Y  by the actuarial certainty equivalent 

value principle, in the final put them together as the pricing of the claim    1 2T T TC c S c Y   , this means, 

          1 2 1 2T T T T Tc S c Y C c S c Y      , 

Even so the assets and are independent. 

3.3 Nonlinear Pricing Formula 

Proposition 3.1 Let 
Q

 is an equivalent martingale measure under the transaction assets S  is a martingale, and at 

the same time, the conditional distribution of non-trading assets, given the traded one, is preserved with respect to 

the historical measure P  , that is: 

    | |S T S TQ Y S P Y S                          (3.18) 

Let  ,T T TC c S Y be the claim, which is priced under exponential preference with risk aversion coefficient  . 

Then the indifference price of TC is given by 
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     
1

log |STCQ Q Q

T T TC C e 


 
   

 
                (3.19) 

Proof. We are going to prove the (3.19) by computing the price  TC  from definition (3.9) and then verifying it 

equal to the right side of (3.19). Let 

      ,i T i T i T ic C c S Y     ,   1,2,3,4.i   

Recall the definition of utility indifference pricing, 

   0supE T TT
S S CC x PV x e e

 



      
 

. 

Simply putting the value into the above formula, we get  

      0

4

1

sup T i T iT
S S CC x

i

i

V x e p e
   



  



    
   

          0 01 2 1 2
1 1

1 2 3 4sup sup
u dS Sc c c cx xe e p e p e e p e p e e g

       

 


             

 Taking the derivative with respect to  g   and then, solving it for the  g   , becomes 

 
  
  

1 2

3 4

1 2*

0 3 4

11
log

1

c cu

u d c cd

p e p e

S p e p e

 

 




   

 


  
. 

By adjusting these two probabilities  

1 d

u d
q



 





 , 

1
1

u

u d
q



 


 


 , 

Scaling (3.20), we get 

 
 
 

  
  

1 2

3 4

1 2*

0

0 3 4

11
1 log

1

c cuu

u

u d c cd

p e p e
S

S p e p e

 

 


  

   

 
 

  
 

 
 
 

  
  

1 2

3 4

1 2*

0

0 3 4

11
1 log

1

c cud

d

u d c cd

p e p e
S

S p e p e

 

 


  

   

 
 

  
. 

Substituting 
*  to  g   , it becomes 

   *TC xV x e g    

       
* *

0 01 2 1 2
1 1

1 2 3 4

u dS Sc c c cxe e p e p e e p e p e
                 

  
 

 
  
  

 

 
  
  

1 2

1 2

3 4

1 2

1 2

3 4

1

1 2

1 2

3 4

1 2

3 4

3 4

1

1

1

1

q
c cu

c c

c cd

x

q
c cu

c c

c cd

p e p e
p e p e

p e p e
e

p e p e
p e p e

p e p e

 

 

 



 

 

 









 



   
   
   

  
 

         
   

 

   
 

1 2 1 2

1
1

1 2 1 2

1

1

q q
q q

c c c cx q q
e p e p e p e p e

q q

   





    

        
     

 

Doing some calculation turn out 
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 
   

 

 

1 2 1 2
1

1 2 1 2

1
1

T

q q
c c c cx

C

qq

e p e p e p e p e
V x

q q

   






 
 


 .          (3.22) 

Inserting values for  1 2 3 40,i.e. 0TC c c c c      , we get 

 
1

0 3 41 2

q q

x p pp p
V x e

q q





    
     

   
                  (3.23) 

Solve it for  TC  , we have 

    0 TC

TV x V x C                        (3.24) 

Which reduces to (via (3.22) and (3.23)) 

         1 2 1 2
11

1 2 3 4 1 2 1 2
T

q qq q x C c c c c
p p p p e p e p e p e p e

    
 

          (3.25) 

Consequently, 

   
3 41 2

3 41 2

1 2 3 4

1 1
log 1 log

c cc c

T

p e p ep e p e
C q q

p p p p

  


 


  

 
        (3.26) 

We note that (3.26) the term in the log function can be expressed as a conditional expectation of TC
e


 under the 

historical measure P  it is follows by: 

 
1 2

1 2

1 2

|T

c c
CPp e p e

e A
p p

 





 .                    (3.27) 

and 

 
3 4

3 4

3 4

|T

c c
CP cp e p e

e A
p p

 





                    (3.28) 

Where 

    1 2, :S u

T TA S        

    3 4, :Sc d

T TA S        

We are going to seek the desired measure Q  with distributions 

 i iQ q   , 1,2,3,4.i   

There is, we should designate the value q  , for 1,2,3,4.i   In a way that 1 2q q q   and 3 4 1q q q   , where 

has given in (3.21). 

Consider the conditional probability  0 09 |S |u u

T TQ Y Y S    . From the fact in (3.18), we easily get 

   0 0 0 09 |S | 9 |S |u u u u

T T T TQ Y Y S P Y Y S         . 

It is reducing to 

    1 1
1 2 3 4 3 4 1 2

1 2 1 2

| |
q p

Q P
q q p p

       
 

 . 

In the same way, we have other numbers, 

3 32 2 4 4

1 2 1 2 3 4 3 4 3 4 3 4

; ;
q pq p q p

q q p p q q p p q q p p
  

     
 , 

Repeat the same idea in different form by (nothing 1 2q q q   ) 
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 
1 2

1,2i
i

p
q q i

p p
 


 and for    

3 4

1 3,4i
i

p
q q i

p p
  


                (3.29) 

Next, we have 

       |S |S |S
log log logT T T T T T

c

C C CQ Q Q

A A
e e e
  

   

       |S |S |S
log log logT T T T T T

c

C C CP P P

A A
e e e
  

   

 
3 41 2

|S3 41 2

1 2 3 4

1
log log log T T

c

c cc c
CP

A A

p e p ep e p e
e

p p p p

  




   
    

    
. 

Taking the expectation with respect to measure, we get 

 |S1
log T TCQ P e



 
 
 

 

3 41 2

3 41 2

1 2 3 4

1
log log c

c cc c
Q

A A

p e p ep e p e

p p p p

  



     
             

 

   
3 41 2

3 41 2

1 2 3 4

1 1
log log

c cc c
cp e p ep e p e

Q A Q A
p p p p

  

 

 
  

  
 

     
3 41 2

3 41 2

1 2 3 4

1 1
log log 1

c cc c

T

p e p ep e p e
q q C

p p p p

  


 

   
     

    
 

Therefore, proposition 3.1 is proved. 

3.4 Valuation Procedure for Indifference Pricing 

From formula (3.18), we can point out that, whether martingale or historical measure, under the single pricing 

method, the two step nonlinear process can be evaluated without distinction. 

The first step is to push the risk preference into the model, distort the yield of the original derivative products to the 

risk preference adjustment income, which is called conditional certainty equivalence: 

 |S1
log T TCP

TC e


                               (3.30) 

The new benefits of the claim TC  , it has an actuarial type of payoff, and it also carry on risk aversion that is based 

on utility methodology. But the certainty equivalence does not apply to the model. In short, in fact, we do not 

consider the functional of the actuarial type, since 

  |S1
log T TCP

TC e


 and  |S1

log T TCQ
TC e


            (3.31) 

The second step of the evaluation is the classic non arbitrage pricing: to price the preference adjusted payoff CT, it is 

dependent only on a traded asset ST, it should be a non-arbitrage price. In these two steps, the same measure should 

be used. For a given price, we have 

     T
T Q Q

TC C C    

Remember, these two steps are not completely different. The first step is nonlinear, but the second step is linear and 

opposite. In the pricing, a pricing measure is used throughout the work. Its basic function is that it should not be 

exchanged with the distribution of the conditions of the risk. It can be exchanged with our past historical values. 

3.5 Properties of Indifference Prices 

We differ from the previous analysis, that is, nonlinear pricing. 

     T
Q Q

T TC C C    

Where the preference adjusted payoff TC  is the conditional certainty equivalent evaluation for 
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 |S1
log T TCP

TC e


  

and the conditional for theQ  measures are: (3.18). There is a direct relationship between the pricing formula and 

the linear pricing formula. This is reflected in our early comprehensive model discussion. 

Here, we will discuss some of the more important structural features in order to better understand the 

undifferentiated pricing. We write the independent of price  TC  relate to the risk aversion coefficient , by 

writing it in way:    ,T TC C     . 

Proposition 3.2.  The price  ,TC  is an increasing and continuous function of (0, )    and moreover, for 

claim
TC  , there holds 

   , ,1 ,T TC C   then 1   . 

Proof. Page 17 

Here, we will discuss some of the more important structural features in order to better understand the 

undifferentiated pricing. We're writing an independent price  TC   relate to the risk aversion coefficient γ, by 

writing it in way:    ,T TC C    . 

Proposition 3.2 The price  ,TC   is an increasing and continuous function of  0,    . And moreover, for 

all claim TC , there holds 

   , ,T TC C     , then                            (3.21) 

Proof: Recall the formula 

 
1

C , e |S .TCQ Q

T T




 
     

 
 

The continuity of   ,TC   in  0,    , it easily follows from the properties of conditional expectation. To 

prove monotonicity, let  1 20< < .   Then applying the Holder’s inequality, 

   1 21 2

1 1

|S |ST TC CQ Q

T Te e
          

After some calculation, we get 

   
1

1 2 2|S |ST TC CQ Q

T Te e



          

And 

1 2

1 2

1 1
log |S log |ST TC CQ Q

T Te e
 

 
        . 

Taking expectation with respect to the Q  measure, it yields that    1 2, ,T TC C     . 

To go through the second part of proposition, recall (3.18); 

   
3 41 2

3 41 2

1 2 3 4

1 1
, log + 1 log

c cc c

T

p e p ep e p e
C q q

p p p p

  

 
 


 

 
 

Substituting =1  instead of    

   
3 41 2

3 41 2

1 2 3 4

,1 log + 1 log
c cc c

T

p e p ep e p e
C q q

p p p p

  




 
 

. 

We take a particular claim, that  1 1 0Tc C    and   0i T ic C    for 2,3,4,i  for which all 1 0c   , it 

becomes 

1 1

1 2 1 2

1 2 1 2

1
log =log

c c
p e p p e p

p p p p





 

 
, 
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differentiating with respect to 1c  , we have 

1 1

1 1

1 2 1 2

c c

c c

e e

p e p p e p






 
 , 

It turns into 

   1 1 1 1 1 1

2 2

c c c c c c
e e p e e p e e

 
      . 

Therefore 1  . 

Proposition 3.3. It holds the following limiting behaviors for the claim: 

   
0

lim , Q

T TC C


 


  ,                          (3.25) 

                 
 .|C

lim ,
Q T

Q

T T L
C C


  



 
 

.                       (3.26) 

Proof. To prove (3.25), we recall the nonlinear pricing formula; namely, 

   
3 41 2

3 41 2

1 2 3 4

1 1
, log 1 log

c cc c

T

p e p ep e p e
C q q

p p p p

  

 
 


  

 
 . 

Sending 0   , and using the fact 

 
1 2

1,2i
i

p
q q i

p p
 


and for    

3 4

1 3,4i
i

p
q q i

p p
  


 

    3 31 1 2 2 4 4

0
1 2 1 2 3 4 3 4

lim , 1T

p cp c c p c p
C q q

p p p p p p p p
 



   
       

       

 

we write it in more simple form, thus we have 

    3 3 4 41 1 2 2

0
1 2 3 4

lim , log 1 logT

p c c pp c c p
C q q

p p p p
 



    
     

     

 , 

   
4

0
1

lim , Q

T i i T

i

C q c C


 




   . 

To prove (3.26), recall formula (3.18), 

   
3 41 2

3 41 2

1 2 3 4

1 1
, log 1 log

c cc c

T

p e p ep e p e
C q q

p p p p

  

 
 

 
    

  
. 

Taking limit as   , we have 

   
3 41 1

3 41 1

1 2 3 4

1 1
, log 1 log

c cc c

T

p e p ep e p e
C q q

p p p p

  

 
 


  

 
 

       1 2 3 4lim , max , 1 max ,TC q c c q c c


 


    

 
 .|

lim ,
Q T

Q

T T L C
C C


  



 
 

. 

Proposition 3.4 The undifferentiated price is in accordance with the principle of no arbitrage, that is, for ry 0  , 

                         , supinf
e e

Q Q

T T T
Q Q Q Q

C C C 
 

   .                 (3.27) 

Here eQ  is the set of equivalent martingales measure which are equivalent to P  . 

To prove the monotony, it is always necessary to have 1 2c c  and 3 4c c  with respect to the risk aversion, 

applying the proposition 3.3, 

   
 .|

,
Q T

Q Q

T T T L C
C C C  

  
 

 . 
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Taking infimum over the set of (3.27), it is suffices to observe the necessary condition, we assume that, 1 2c c  

and
3 4c c  

 
       1 2 3 4.|

max , 1 max ,
Q T

Q Q

T TL C
C q c c q c c C

     
 

, 

Where Q  is also martingale measure with some elementary probabilities, we have, 

       1 2 3 40, , 0, 1Q Q q Q Q q         . 

Then 

 
 

   
.|

, sup
Q T

E

Q Q Q

T T T TL C

Q Q

C C C C  



   
 

. 

Proposition 3.5 Indifference price  TC  is increasing and convex function of payoff 
TC  , which the following 

are satisfied, 

Ⅰ. If
1 2

C C
T T
  , then    1 2

T TC C   ,                    (3.28) 

Ⅱ. For every         1 2 1 20,1 , 1 1T T T TC C C C         .      (3.28) 

Proof. Recall the formula 

 
1

log |TCQ Q

T TC e S


 
    

 
 . 

To prove (3.28), since  TC  is increasing in 
1 2

T TC C  , putting these values into the above equation, we get 

   
1 2

1 21 1
log | , log |T T

C CQ Q Q Q

T T T TC e S C e S
 

 
 

                   
 , 

From the fact 
1 2

T TC C  , then we can write them in term of above pricing formula, 

   
1 2

1 21 1
log | log |T T

C CQ Q Q Q

T T T Te S e S C C
 

 
 

                    
 . 

To show the (3.29), applying Holder’s Inequality, we get, 

      1 2 1 21 1T T T TC C C C         

by definition of conditional certainty equivalent, 

  1 211
log |

T TC CQ Q

Te S




         
 

   
 

1 2
11

log | |T TC CQ Q Q

T Te S e S
 



              
 

     
1 21 1

log | 1 log |T TC CQ Q Q

T Te S e S 

 

                 
 

     1 21T TC C     

Hence convexity is proved. 

Proposition 3.6 The indifference price of  TC  satisfies the following properties: 

                       0,1T TC C for every     ,                   (3.30) 

and 

    1T TC C for every                           (3.31) 
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Proof. From proposition 3.5, we have 

   
1

C log |TCQ Q

T Te S


 
     

 
 . 

We observe that, if  0,1  , then setting the      , it becomes 

       
1

, log | ,TCQ Q

T T T TC C e S C    


 
       

 
 . 

Since  ,TC   is increasing function in  , we can derive the relation from (3.30), that is 

       , ,T T T TC C C C         . 

To prove (3.31), using the monotonicity of price with respect to the risk aversion. If 1 then   . 

Hence form the increasingness of  ,TC   we get, 

       , ,T T T TC C C C          . 

4 CONVEX RISK MEASURE 

In simple terms, there are two possible explanations for a risk measure: they are considered a pricing rule and a 

capital requirement rule. The convex risk measure has a certain nature and is very important in the TC  meaning of 

the claim's income. There is a very close relationship with the undifferentiated pricing. 

Definition 4.1 A mapping form φ : TF R  is said to be convex risk measure, if it satisfies the following 

properties, for every 
1 2, ,T T T TC C C F  .  

Ⅰ. Convexity:           1 2 1 20,1 ,φ 1 φ 1 φT T T TC C C C       . 

Ⅱ. Monotonicity: if        1 2 1 2,then φ φT T T TC C C C  . 

Ⅲ.Translation invariance : for    , thenφ φT Tq R C q C q     . 

To define a mapping on T TC F  by 

      
1

φ log |TCQ Q

T T TC C e S


 
      

 
                     (4.1) 

Note: The number  TC  in the indifference pricing is the value of the pay off TC  , whereas the 

   φ T TC C    interpreted as a capital requirement imposed by supervising body or company to accept the 

position TC  . 

Proposition 4.1 In (4.1) the mapping which is given, it called a convex risk measure. 

Ⅰ. Convexity:            1 2 1 20,1 ,φ 1 φ 1 φT T T TC C C C                   (4.2) 

Proof. For the convexity, we applying Holder’s inequality, it becomes, 

            1 2 1 2φ 1 1T T T TC C C C         

   1 211
log |S

T TC CQ Q

Te




    
     

 , 

By Holder’s inequality   
 

1 2
11

log |S |ST TC CQ Q Q

T Te e
 






 
              

     

     
1 11 1

log |S 1 log |ST TC CQ Q Q Q

T Te e 

 

                  
. 

     1 2φ 1 φT TC C    
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Ⅱ. Monotonicity: if        1 2 1 2,then φ φT T T TC C C C   .                    (4.3) 

Proof: To prove monotonicity; since 
1 2

T TC C  , the risk measurement should be reduced by the value added value. 

If investors are more willing to get more returns from their investment, we can change it to financial terms, and the 

return on investment is low. 

   
1 2

1 21 1
log |S , log |ST TC CQ Q Q Q

T T T TC e C e  
 

                
 

       
1 2

1 1 2 21 1
φ log |S ,φ log |ST TC CQ Q Q Q

T T T T T TC C e C C e  
 

                     
 

 becomes 

       1 2 1 2 1 2, φ φT T T T T TC C C C C C     , 

Ⅲ.Translation invariance : for    , thenφ φT Tq R C q C q      .             (4.4) 

Proof: To prove translation invariance, we recall definition (4.1). Since q R , and  φ TC q , setting the values 

into (4.1), it becomes 

        1
φ log |STC qQ Q

T T TC q C q e





           
 

 
11

log |STC qQ Q

Te  



       
 

   1
log |STCQ Q Q q

Te e 



  
       

 
 

   
1 1

log |STCQ Q

Te q 
 

 
     

   

   
1

log |STCQ Q Q

Te q



 
    

   

  1
log |STCQ Q

Te q




 
    

   
 φ TC q 

 

Remark 4.1 In convex risk measurement, convexity means that diversification should not be increased. In order to 

understand better, any convex combination that allows the risk must be admissible. 

Remark 4.2 In financial mathematics, monotonicity refers to the reduction in the risk of the lower side when the 

income increases. 

Remark 4.3 The interpretation of translation invariance is also a very important nature of the convex risk 

measurement.  φ TC  may be interpreted as the amount the agent has to hold to completely cancel risk associated 

with his risky position in claim  φ TC  . 

Proposition 4.2 An agent, whom wants to completely cancel risk from the risky position  φ TC  , given by 

      φ φ φ φ 0T T T TC C C C                               (4.5) 

Proof. To conclude the (4.5), recall definition (4.1), 

       φ φ φ φ φT T T TC C C C    

     
1

φ log |STCQ Q

T T TC C e 


 
      

 
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         
1

φ φ log |STCQ Q

T T T TC C C e  


 
           

   

   
1 1

log |S log |ST TC CQ Q Q Q

T Te e 

 

    
          

     
From the fact that     φ φT TC C   , 

   φ φT TC C 
 

   =φ φ 0T TC C 
. 

5 EXPECTED UTILITY AND INDIFFERENCE PRICING 

5.1 Expected Utility and Lotteries 

Modern mathematics financial theory P and P economic theory believe that if an agent faces uncertainty, then 

their decision should be based on expected utility. That is to say, the possibility of integrating (or summarizing) the 

utility of wealth exceeds the result. If you remember that the utility function is a random variable, and the 

expectation of a random variable is a number, then it is natural. 

5.2 Lotteries 

Let  , ,TF , be a probability space. Observe that given two lotteries and, any convex combination of them: 

 1p    Ṕ  with  0,1  is also a lottery. This can be viewed simply as stating the mathematical fact 

that  is convex. We can also view  1p   Ṕ  more explicitly as a compound lottery, summarizing the 

overall probability from two successive events: first, a coin flips with weight ,  1  that determines whether 

the lottery P or Ṕ   should be used to determine the ultimate consequences; second either the lottery P or Ṕ   .  

5.3 Expected Utility Definition 

Definition 5.1 A utility functionU : →R  has an expected utility form (or is a von Neumann-Morgenstern utility 

function) if there are numbers  1, , nu u  for each of N  outcomes  1, , nx x such that for every ,P  

where  , ,TF  is probability space, and we have  
1

n

i i

i

U P Pu


  . In case of two lotteries it will reduce to the 

form  1p   Ṕ .Investor preferences can be expressed as expected utility functions. For example, if we have 

two random results, the probability space is  , ,TF  . In order to make a preference between the two, we need 

to know the expected utility of two random results. To a certain extent； 

        1 2 1 2p p u p u p                              (5.1) 

Crucially, an expected utility function is linear in the probabilities, meaning that: 

                        1 1U p U p U     ′ ′P P  .                   (5.2) 

5.4 Certainty Equivalent and Expected Utility  

Now let's briefly review our periodic complete model, which consists of two assets, one is a money market account 

and the other is a risky asset. But here, the interest rate of riskless assets is non zero. The randomness of asset S  is 

given by a probability space  , ,TF , with the probability p and  1 p  , the probabilities are from flips of a 

con, but not fair coin. To evaluate the assets, from (2.5), we can write, just by adding nonzero interest rate to model, 

                          
   1

0

1

1 1

u dpS p SS
S

r r

    
 

  .                        (5.3) 

Formula (5.3) is a reasonable method for pricing assets in a complete market, called a binomial non arbitrage pricing 

method for discrete time assets. Another pricing method, called undifferentiated pricing, is based on an exponential 
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utility function, if one has two random results, 
1L  and

2L  . In order to consider the expected utility between the 

two, we can write their preferences in written form,   

                            1 1 22L L u L u L        .                     (5.4) 

Let 1L  and 2L be two possible opportunities (situations) for investment in the market, and Let 0X x  be an initial 

wealth, to allocate the initial wealth 0X x  between, 1L  and 2L , we need to know 1L  and 2L behaviors in the 

market. They are the following, 

a)=(opportunity 1L  ).(do nothing): We have initial wealth X yuan into a savings account and increase at risk-free 

interest rate. Ex0pected's practical random outcomes is
1L  is just the expected utility of our initial wealth. 

0X x is current wealth. We have two possible random outcomes from this strategy. They are, 

                                           x(1+r) 

                             x 

x(1+r) 

FIG 5.1 A ONE STEP BINOMIAL MODEL FOR A SAVING ACCOUNT OF INITIAL WEALTH X. 

B)  =(opportunity 2L  ),(buy an asset S  ): We buy the asset S , our current wealth is  0x S  , but in case, we 

have one unit of asset S . The two possible random results of the second strategies are, 

                                                  0 1uS x S r    

                                     p  

 

                                    1 p  

  0 1dS x S r    

FIG 5.2 A ONE STEP BINOMIAL MODEL FOR BUY THE ASSET S  

Definition 5.1 Investors are indifferent to "putting X dollars into the money market account" and "buying a share of 

S  and liquidation." We can write it in a form. 

                    1 2u L u L                                       (5.5) 

In mathematical finance, the most useful utility function is exponential utility. We choose 

 
1 1x

xe
u x e




 




    

Where in (5.6),   is the risk aversion level of an agent and 0X x  is an initial wealth. If we send 0x  the , 

  0u x   and by sending x   , then  
1

u x


  in the same manner we can do it for  . 

Recall (5.5) 

   1 2u L u L        . 

Note:  1u L    and  2u L    are the expected utilities of 1L  and 2L . 

The expected utility of 1L  , is    1

1

1 x r
u L e





 
     , and also the expected utility of 2L , is 

         0 01 1

2

1
1u dS x S r S x S r

u L pe p e
 



                     
 

Putting the expected utilities of 1L  and 2L , together into (5.5), by definition we get 

         0 01 111 1
1u dS x S r S x S rx r

e pe p e
 

 

                    
 

 



 

- 21 - 

www.ivypub.org/mc 

Where the initial wealth factors out, 

         0 01 1 1 11 1
1u dx r x r S x S xS S

e e pe e p e e
    

 

           
 

, 

and 

         0 00
1 11

1 1u dS x S r S x S rS r
e pe p e

                   
 

 , 

    0 1
log log 1u dS r S S

e pe p e
           

Consequently, we get 

 
 0

1
log 1

1
u dS S

S pe p e
r

 



      
                       (5.6) 

The calculation formula (5.6) is equivalent to the actuarial point of view for the determination of the asset price of 

S . Here recall that point 3.3 here, and we'll apply it to our strategy (5.6).  Suppose that the investor is an infinite 

risk aversion. How much should he pay for the asset S  ? In financial mathematics, we can answer this question by 

sending    (= infinitely risk averse). 

We re-invoke (5.6), 

 
 0

1
log 1

1
u dS S

S pe p e
r

 



      
 

 By sending   , it turns out 

 
 

      0

1
lim lim ln 1

1

u dS S

dS pe p S


 


 

 

 

              

 

After some calculation. We get 

 
   

 
1

lim log 1
1 1

u dS S dS
p pe



    

 



            
 

 
 

0lim
1

dS
S

 



.                                       (5.7) 

So Formula (5.7) means:  That if an agent is infinitely risk averse he or she should pay
 1

dS


 for the asset to 

compensate. 

Apply the second limit behavior of proposition 3.3 to the formula (5.6). which correpont to vanish the risk from the 

strategy, (sending 0   ). 

Recall formula (5.6), 

 
 0

1
log 1

1
u dS S

S pe p e
r

 



      
 

Take the limit with respect to 0  , 

 
 

1
lim lim log 1

1
u dS S

pe p e
r

 

  

 

 

 
        , 

Applying Taylor expansion, this turns into 
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 
 

      0

1
lim log 1 1

1
u dA pS p S o

r
 


     


 

Using the fact that    log 1 y y o y    , it gives 

 
 

   0

1
lim log 1 1

1
u dS pS p S

r



    


 

 
  

1
1

1
u dpS p S

r



   


 

 

 

 
 

1
1

1 1

u dpS p S S

r r

    
 

    .                       (5.8) 

Therefore, the formula (5.8) means that if we completely eliminate the risk formation strategy, the deterministic 

equivalent method becomes the risk neutral valuation method. 

6 CONCLUSIONS 

Through the analysis, we conclude that in the complete market, each claim can be perfectly replicated, and the whole 

risk can be eliminated from the strategy. When the market is incomplete, it is impossible to replicate completely, not 

all risks can be eliminated from the strategy, compared with the arbitrage pricing method and the indifference pricing 

method. The arbitrage pricing method is linear, but the undifferentiated pricing method is nonlinear. The indifference 

price is a nonlinear function of the claim’s payoffs, exactly for 0,1∝≠ , which is    T TC C   . Indeed, 

as it is established by proposition 3.6, if 1  , the indifference price is super-homogeneous, while, if 1  , the 

indifference price is a sub-homogeneous, function of TC . Another result, which was nonlinearity, for two payoffs, 

like 
1

TC  and
2

TC  , the indifference price functional is nonadditive, namely      1 2 1 2

T T T TC C C C      , it can 

be extended to finite number of payoffs. The inadditive behavior of apathy pricing is a nonlinear characteristic of a 

direct consequence of apathy. In addition, as an important consequence of the nonlinearity, the agent does not want 

to double the risk if he wants to buy a claim. The undifferentiated price increases monotonously, but the 

monotonicity of the risk measure is reduced. Finally, the two limit behavior of the monotonicity of undifferentiated 

pricing is applied. Finally, a good application of the two restrictive behavior of the undifferentiated pricing rule can 

be modeled as an infinite risk aversion or a risk neutral. 

REFERENCES 

[1] FASB (2004). Share-based payment (Report). Financial Accounting Standards Board. 

[2] Shao Muo Weisi, Zhang Tong, Predictive text mining foundation, Xi'an, Xi'an Jiaotong University Press, 2012. 

[3] William Falloon; David Turner, eds. (1999). “The evolution of a market”. Managing Energy Price Risk. London: Risk Books 

[4] Kemna, A.G.Z. Vorst, A.C.F.; Rotterdam, E.U.; Instituut, Econometrisch (1990), A Pricing Method for Options Based on Average 

Asset Values 

[5] Feynman R.P., Kleinert H. (1986), ”Effective classical partition functions”, Physical Review A 34: 5080-5084, 

Bibcode:1986PhRvA..34.5080F, doi:10.1103/PhysRevA.34.5080, PMID 9897894 

[6] Devreese J.P.A., Lemmens D., Tempere J. (2010), “Path integral approach to Asianoptions in the Black-Scholes model”，Physica A 

389: 780 -788, arXiv:0906.4456, Bibcode:2010PhyA..389..780D, doi:10.1016/j.physa.2009.10.020 

[7] Rogers, L.C.G.; Shi, Z. (1995), “The value of an Asian option”, Journal of Applied Probability (Applied Probability Trust) 32 (4): 

1077 - 1088, doi: 10.2307/3215221, JSTOR 3215221 

[8] V.Henderson and D.Hobson. Utility Indifference pricing: An overview in “Indifference pricing: Theory and Applications” Edited by 

R.Carmona, Princeton University Press, 2009, pp. 44 - 77 

[9] Broadie, M., Glasserman, P., and Kou, S.G. (1997). A continuity correction for discrete barrier options. Mathematical Finance, 7(4), 

325 - 348. 

[10] Fusai, G., and Roncoroni, A. (2008). Implementing Models in Quantitative Finance: Methods and Cases. Spring-Verlag. 



 

- 23 - 

www.ivypub.org/mc 

[11] Geman, H., and Yor, M. (1996). Pricing and hedging double-barrier options: A probabilistic approach. Mathematical Finance, 6, 365 

- 378. 

[12] Heynen, R.C., and Kat, H.M. (1994). Partial barrier options. Journal of Financial Engineering, 3, 253 - 274 

[13] Hull, J.C. Options, Futures, and Other Derivative Securities, 3rd edn. Prentice Hall, Engine wood Cliffs, NJ. 

[14] Merton, R.C. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4, 141 - 183. 

[15] Young, D.M., and Gregory, R. T. (1972). A survey of Numerical Mathematics, Volumel. Addison-Wesley. 

AUTHORS 
1
Jinyang Sun(1997-), Master graduate. 

E-mail:1210882991@qq.com  

 

 

2Yicheng Hong (1980-), Master graduate, 

research direction: application statistics. 

E-mail: ychong@ybu.edu 

 

 


	Indifference Pricing in the Single Period Binomial with Complete Market Model

