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Abstract 

In this paper, by using Lyapunov’s direct method, we consider the Mittag-Leffler stability of fractional-order non-autonomous 

systems with the nabla left Caputo difference operators is studied. The sufficient conditions for Mittag-Leffler stability are discussed 

for such systems. 
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INTRODUCTION 

Many systems exhibit the fractional phenomena, such as motions in complex environments including random walk of 

bacteria in fractal substance, the viscoelastic materials, and electrode Celectrolyte polarization, and electromagnetic 

waves and so on. This makes the fractional order differential equations describe the dynamics of these systems more 

accurately than the integer order ones. Therefore, fractional calculus has become an important mathematical tool used 

in several branches to solve a variety of applied problems [1–5]. Starting from the idea of discretizing the Cauchy 

integral formula, Miller and Ross [6] obtained discrete versions of left type fractional sums and differences. The 

concept of Caputo fractional difference was introduced and investigated [7]. After that, Thabet investigated the relation 

between Riemann and Caputo fractional differences, and the delta and nabla discrete Mittag-Leffler functions are 

confirmed by solving Caputo type linear fractional difference equations [8]. 

Recently, the stability analysis of nonlinear fractional dynamic systems was introduced in many articles, including 

uniform stability, asymptotic stability, finite time stability and Mittag-Leffler stability and so on [9–15]. But the Mittag-

Leffler stability of discrete fractional difference systems has not been studied. 

This paper investigates the Mittag-Leffler stability of a class of fractional-order discrete nonautonomous systems with 

Caputo derivative. It is organized as follows. In section 2 basic definitions of discrete factional calculus are mentioned. 

In section 3, we discuss the Mittag-Leffler stability of the fractional discrete nonautonomous systems. 

DEFINITIONS AND ESSENTIAL LEMMAS 

In this paper, we use discrete fractional operator as our main tools, and summarize the basic theory of discrete calculus 

[16,17]. Throughout we assume that the functions are defined in the interval [a, b], and we denote that Na = {a, a + 

1, . . .}. 

For real number the a b, we denote that a¥ = {a, a + 1, . . .} and 1b− ¥ = {b, b −1, . . .}, 

For any real number the α rising function becomes 

( )
, \{..., 2, 1,0}, 0 0. (1)
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with the convention that division at pole yields zero. Given that the backward difference operator is defined by 
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( ) ( ) ( 1), (2)f t f t f t = − −  

and then we observe the following: 

1( ) . (3)t t  − =  

Definition 1 [16] Let (t) =t+1  and ( ) 1t t = −  be the forward and backward 

jumping operators. Then we have the following, 

(i)The (nabla) left fractional sum of order 0   (starting from a) is defined by 

1
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(ii)The (nabla) right fractional sum of order 0   (ending at b) is defined by 
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By the definition of the nabla right fractional sum, we observe the following:  

(i)
a

−  maps functions defined on a¥ to functions defined on a¥ . 

(ii)
b

− maps functions defined on 
b¥ to functions defined on

b¥ . 

Definition 2 [16] The nabla α−order Riemann left fractional difference of a function f defined on a¥ is defined by 

( ) 1

1

1

( ) ( ) ( ( )) ( ), . (6)
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By the definition of the nabla right fractional difference, we observe that a

   maps functions defined on a¥  to 

functions defined on
a n+¥ . 

Definition 3 [17] The nabla  − order Caputo left fractional difference of a function f defined on a¥ and some points 

before a  is defined by 

( )
( ) 1

1

1
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By the definition of the nabla Caputo left fractional difference, we observe that a

 maps functions defined on a¥ to 

functions defined on ( )a n + −¥ , where   1n = + and    is the greatest integer less than . 

Riemman and Caputo nabla left fractional differences are related by the following lemma. 

Lemma 1 [17] For any 0  , the following identity is vaild: 
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In particular, when 0 1  , one has 
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( ) ( ) ( ). (9)
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If ( ) 0f t  , we have ( ) ( )C

a af t f t    for 
0t t . 
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Lemma 2 [17] Assume that 0  and f  is defined on suitable domains a¥ , the following identity is vaild: 

1

0
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In particular, when 0 < α < 1, one has 

( ) ( ) ( ). (11)C

a a f t f t f a −  = −  

Proposition 1 [18]  The generalized nabla discrete Mittag-Leffler function was defined as                           
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For 1 = , one has 
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It should be mentioned that the solution of the following IVP(16) 

 
0( ) ( ) ( ), ( ) , . (14)C

a ax t x t f t x a x t  = + = ¥  

Is given by 

0 ,
1

( ) ( , ) ( , ( )) ( ). (15)
t

s a

x t x E t a E t s f s
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  

= +

= − + −  

MITTAG-LEFFLER STABILITY FOR DISCRETE FRACTIONAL SYSTEMS 

In this section, we consider the following nabla discrete fractional system 

0( ) ( ( )), ( ) , . (16)C

a ax t f t x t x a x t = = ¥，  

where 0 1, : n

af  →ァ  is continuous, and 
n¡  is a domain that contain the origin 0x =  . Let

( ,0) 0f t = , so that (16) admits the trivial solution. In order to analyze the stability of the fractional systems, we define 

the stability in the sense of Mittag-Leffler. 

Definition 4  The trivial solution ( ) 0x t =  of fractional difference system (16) is said to be Mittag-Leffler stable if 

0 0( ) ( ( )) ( , ) , (17)
b

x t m x t E t t

  −   

Where 0, 0, (0)=0 ( ) 0, ( )b m m x m x   ， is locally Lipchitz on { :n

rx x =  ¡  

} nx r  ¡  and   denotes an arbitrary norm. 

Theorem 1  Assume that there exists a scalar function  ( , ) ,a rV t x C + ァ and positive constants 
1c , 2c

and 3c such that 
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2 2

1 2( , ) , (18)c x V t x c x    

and 

 
2

3( , ) , (19)C

aV t x c x   

for all 
0( , ) ,a rt x t t  ¥ , then the trivial solution of (16) is Mittag-Leffler stable. 

Proof: Let 
0 0( ) ( , , )x t x t t x= be any solution of (16). From inequalities (18) and (19), we obtain 

3

1

( , ) ( , ). (20)C

a

c
V t x V t x

c

   

Then there exists a nonnegative function ( )M t satisfying 

 3

1
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a
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Taking the Laplace transform of (15) gives 

 3 3
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Obviously, 3
0 0

1

( , ) ( , ) ( , )
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V t x V t x E t a
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 −  . From inequalities (18), we have
2

x 
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2
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32
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 
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 
 According to the definition 4, which implies that system (16) 

is Mittag-Leffler stable. 

Theorem 2 Assume that there exists a scalar function ( , ) ,n

aV t x C +
   ァ ? and positive constants 

1c , 2c and

3c  such that
2 2

1 2( , )c x V t x c x   and ( , )C

aV t x  3 ( , )c V t x  ,for all 0( , ) ,n

at x t t  ァ  , then the trivial 

solution of (16) is globally Mittag-Leffler stable. 

Proof: Similar to the proof of Theorem 1, we can get 
1

2
32

0

1 1

( ) ( , )
cc

x t x E t a
c c

 
 − 

 
，for all 0( , ) ,n

at x t t  ァ . 

Thus ( )x t is globally Mittag-Leffler stable. 

Theorem 3 (i) Assume that the assumptions in Theorem 1 are satisfied except replacing 
C

a

  by a

 , then the trivial 

solution of (16) is Mittag-Leffler stable; 
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(ii) Assume that the assumptions in Theorem 2 are satisfied except replacing 
C

a

  by 
a

 , then the trivial solution 

of (16) is globally Mittag-Leffler stable; 

Proof: By using Lemma 1, the result is obviously valid. This completes the proof. 
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