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Abstract

The rapid development of the aviation industry urgently requires airspace traffic management, and flight trajectory prediction is a
core component of airspace traffic management. Flight trajectory is a multidimensional time series with rich spatio-temporal
characteristics, and existing flight trajectory prediction methods only target the trajectory point temporal relationships, but not the
implicit interrelationships among the trajectory point attributes. In this paper, a graph convolutional network (AR-GCN) based on
the intra-attribute relationships is proposed for solving the flight track prediction problem. First, the network extracts the temporal
features of each attribute and fuses them with the original features of the attribute to obtain the enhanced attribute features, then
extracts the implicit relationships between attributes as inter-attribute relationship features. Secondly, the enhanced attribute
features are used as nodes and the inter-attribute relationship features are used as edges to construct the inter-attribute relationship
graph. Finally, the graph convolutional network is used to aggregate the attribute features. Based on the full fusion of the above
features, we achieved high accuracy prediction of the trajectory. In this paper, experiments are conducted on ADS-B historical
track data. We compare our method with the classical method and the proposed method. Experimental results show that our
method achieves significant improvement in prediction accuracy.

Keywords: Deep Learning; Graph Convolution Neural Network; Flight Trajectory Prediction

1 INTRODUCTION

In recent years, with the rapid growth of the aviation industry, air traffic monitoring has become a common focus of
society. Therefore, the United States, the European Union, and China have proposed a plan to jointly build a next-
generation air traffic management (ATM) system. The air traffic management system is a dynamic, complex,
information-driven automated systeml(t. The main objective of the program is to make full use of the available
airspace and routes to ensure safe and efficient flightsi?. Trajectory prediction (TP) is a core component of ATM[3!,
so the trajectory prediction problem is an important issue for air traffic management.

The flight's trajectory points contain several attributes, such as time, longitude, latitude, altitude, and airspeed. The
purpose of trajectory prediction is to predict the values of each attribute of the aircraft's future trajectory points. The
current trajectory prediction methods mainly include trajectory prediction based on aerodynamic and aircraft
performance models(*>12 trajectory prediction based on traditional time series prediction methods[®10.241 and
trajectory prediction based on machine learningl®1617.18] Among them, the trajectory prediction methods based on
aerodynamic and aircraft performance models require a large amount of accurate a priori knowledge, and the
trajectory prediction methods based on traditional time-series prediction methods lack the ability to capture the
complex nonlinear features of flight data.

Machine learning-based methods for trajectory prediction have become a hot research topic. The literature1”! based
on Long Short-Term Memory (LSTM) network for trajectory, but LSTM only focuses on capturing the features of
the trajectory points in the time dimension. In the literaturel”], a CNN (Convolutional Neural Network) and LSTM
based trajectory method was proposed to extract features in the spatial and temporal dimensions of the trajectory by
CNN and LSTM, respectively, but failed to fully explore the implied interrelationships between the attributes of the
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trajectory points. In the literaturel®], the K-means clustering algorithm is used to cluster the trajectory points with
similar features into one flight state, and the corresponding GRU (Gated Recurrent Unit) prediction model is trained
for each flight state, which integrates all the attributes contained in the trajectory points when calculating the
distance values from the clustering centre. The existing work on deep learning-based trajectory prediction has
explored a lot in terms of mining the temporal relationships of the trajectory points. However, the implicit
interrelationships between the attributes of the trajectory points are ignored. Flight trajectories contain multiple
attributes, so the trajectory problem is a multivariate time-series prediction probleml®. In this paper, an Inter-
Attribute Relationships based Graph Convolutional Networks (AR-GCN) is proposed for solving the trajectory
prediction problem. Our contributions are summarized as follows:

(1) AR-GCN fuses attribute features and inter-attribute relationship features. Firstly, the augmented attribute features
are obtained by extracting the attribute timing features and fusing the original attribute features to obtain the
augmented attribute features, and the implied relationships between attributes are extracted as the inter-attribute
relationship features. Secondly, the inter-attribute relationship graph is constructed by using the augmented attribute
features as nodes and the inter-attribute relationship features as edges. Finally, the attribute features are aggregated
by a graph convolutional network, and the attribute features are input to a multilayer perceptron (MLP) to achieve
flight trajectory prediction.

(2) We conduct single-step prediction and multi-step prediction experiments on real flight data, respectively. The
experimental results show that the model proposed in this paper effectively improves the prediction accuracy of the
trajectory and reduces the root mean square error and the mean absolute error of the prediction.

2 RELATED WORKS

Currently, the prediction methods can be divided into three categories based on the differences in the trajectory
prediction methods: trajectory prediction based on aerodynamic and aircraft performance models, trajectory
prediction based on traditional time-series prediction methods, and trajectory prediction based on machine learning.

The first approach bases the trajectory prediction on the a priori knowledge provided by aerodynamics and flight
models. For example, the literature! proposed a four-dimensional trajectory prediction method based on the basic
flight model to construct horizontal profile, altitude profile and velocity profile models of the aircraft for trajectory
prediction according to the characteristics of different flight phases. The literature® proposed a new four-
dimensional trajectory prediction model based on the statistical analysis of the actual radar trajectory data of the
aircraft, combined with the aircraft intention model and the aircraft dynamics kinematic model. The literature 12l
proposed an algorithm to dynamically adjust the flight model weights based on the observed trajectory data to
improve the accuracy of trajectory prediction. The aerodynamic-based approach and flight performance model
require a large number of accurate prior assumptions and a priori knowledge, which leads to a model that cannot
adapt to the complex and variable airspace environment, with high computational complexity and low prediction
accuracy.

The second approach is the traditional time series prediction methods including Kalman filter algorithm,
autoregressive integrated moving average method, particle filter, etc., which treats the trajectory prediction problem
as an estimation problem of a stochastic linear mixed system. A new UAYV attitude estimation algorithm is proposed
in the literaturel®l. The algorithm uses attitude quaternions to represent the attitude of the UAV and achieves the
UAV attitude estimation by the Extended Kalman Filter (EKF). The literaturel”] proposed an interactive multimodal
prediction algorithm for vehicle motion diversity and uncertainty based on hybrid systems theory. The literatureli!
proposed a hybrid state estimation method based on wind speed and wind direction to achieve the trajectory
prediction. The traditional time-series prediction methods to solve the trajectory prediction problem are inadequate in
acquiring the complex nonlinear time-varying characteristics of the trajectory.

The third method is a machine learning based trajectory prediction method. This method has nhow become a research
hotspot because it does not need to build a complex aircraft kinematic model. The literature*®! proposed a BP neural
network-based radar track prediction method in a complex electromagnetic environment. The literature[*°l
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constructed a 4D track prediction model using LSTM neural network, and used LSTM to focus on capturing the
features of track points in the time dimension. The literature[28 proposed a CNN and LSTM-based track prediction
method, which extracts the implied relationships within the track points and features in the temporal dimension by
CNN and LSTM, respectively. The literaturel® proposed a track prediction model combining K-means clustering and
gated recurrent unit (GRU) neural network, which clusters the track points with similar features into one flight state
by K-means clustering algorithm, and trains the corresponding GRU (Gated Recurrent Unit) prediction model for
each flight state. The literature[16] proposed three constraints for the climb, cruise and landing phases based on the
dynamics of the aircraft and embedded them into the LSTM. In the literaturel*l, a four-dimensional joint cube
structure was designed to fuse weather information with trajectory point information as the input of Hidden Markov
Model (HMM) to predict the flight trajectory under environmental uncertainty.

Compared with the traditional methods, the existing deep learning-based track prediction methods have shown some
superiority. However, these works ignore the interrelationship information between multiple attributes of the
trajectory points, resulting in the prediction accuracy still needs to be improved. Therefore, we propose a graph
convolutional network AR-GCN based on inter-attribute interrelationships to fuse attribute features through inter-
attribute implicit relationships to improve the accuracy of trajectory prediction.

3 METHOD
3.1 Problem Definition
Given a series of historical trajectory points:
T={R,R.K, R} (1)

where, P, denotes the trajectory point at the moment i, and K denotes the time span of the trajectory. Each
trajectory point consists of multiple attributes, denoted as:

P={a,a,K,a,}i=12K K )

where, @, is the m -th attribute in trajectory point P, M is the number of attribute, 1< m <M . Attributes
include longitude, latitude, altitude and airspeed. For ease of presentation, we use A, to denote the sequence
composed by the m -th attribute in the historical time:

Aﬂ:{alm’an’K’aKm}’ m::LZ)KyN (3)
Therefore, from the perspective of attributes, the historical trajectory points can be expressed as:
T={A,A K, A} @)

The historical trajectory points described from the temporal perspective and the historical trajectory points described
from the attribute perspective are denoted as T"™ and T .

Based on these time-series data, we aim to predict the values of multiple attributes from the future trajectory points
Pe.i to Py, Where H represents the prediction step size. To address this problem, we propose a graph
convolutional network (AR-GCN) based on inter-attribute dependencies, and its general architecture is shown in Fig.
1. First, the attribute temporal features are extracted and the temporal features and the original attribute features are
fused to obtain the enhanced attribute features. Secondly, the inter-attribute relationship features are extracted by the
attention mechanism. Again, the enhanced attribute features are used as nodes and the inter-attribute relationship
features are used as edges to construct the inter-attribute relationship graph. From the next, the aggregated attribute
features are extracted from the inter-attribute relationship graph using a graph convolutional network to synthetically
capture each attribute and the associated attribute features. Finally, the aggregated attributes are input to the
multilayer perceptron to obtain the final prediction results.

-3-
www.ivypub.org/cst



Tmporal Feture 'l el
| |:|'>| Exactor [::> ] I:> fi> f I
| I Attribute Temporal Accumulated Feature |

Pattern

|

|

| I
' on == o (om0 O O
| I Cc;::tlztrlzn . Construction o 0 MLP I
| | Learning I
| I
| I

Flight Data Attribute

I Correlation

FIG.1 THE FRAMEWORK OF AR-GCN

3.2 Enhanced Attribute Feature Learning

In this section, the original features of each attribute are extracted by performing an embedding operation on the
attributes of each waypoint. The temporal features of each attribute are extracted by performing a multi-scale
convolution operation on the temporal data of each attribute. These two features are fused to learn the augmented
attribute features. The learning process of the enhanced attribute features is shown in Figure 2.

First, the embedding is done for each attribute and the embedding of all attributes is stitched to obtain the original
features of the attributes. The calculation process is shown in Equation (5).

£ — g(A, WEL,) ©

where, EX e RM™ , D denotes the dimensionality of the embedding. ¢(-,-) represents the linear

LEA
transformation. W' . € R“*® s the weight coefficient of linear variation.

Second, for each attribute sequence A, , the global time-varying features of the attribute are extracted by multiple
multi-scale convolutions with different convolution kernel sizes. Given the set of values of an attribute m at all
historical time points An IS RlXK, the 1D convolutions of 1x 3, 1x4 and 1x5 are used to extract the temporal
feature information at different time steps, and the results obtained from each convolution are stitched to obtain the
multi-scale time-varying feature representation vector U € R™" of the corresponding attribute , where D"
denotes the dimensionality of this feature vector, and the extraction equation is as follows.

U, =Conv(A,,Ky,) ‘ConV(A11 1K) ) ‘Conv(An ' Kys) ) (6)

Finally, the original attribute features E® are spliced with the time-varying attribute features U . Finally, an
enhanced attribute feature F < R™ (2™ containing both the original and time-varying features is obtained.
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FIG. 2 ENHANCED ATTRIBUTE FEATURE LEARNING
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3.3 Inter-Attribute Relationship Feature Learning

There are implicit interrelationships between attributes. To enrich the information contained in the inter-attribute
relationship features, this section uses a self-attentive mechanism for each attribute's feature to obtain the inter-
attribute correlations. The learning process of inter-attribute relationship features is shown in Figure 3.

The attribute attention score matrix is calculated for each attribute feature using the self-attention mechanism, called
the attribute relationship feature matrix R € R™M “and the process of calculating the self-attention is shown in
Equations (7) to (9).

Q = ¢( EORI 7WQuery) (7)
Key = ¢(E™" W, ) ®)
R = soft max[%] 9)

where, ¢(-,-)erepresents the Iinearm:[ransformation. Q and Key are the query and key of the attention mechanism.
Wogery e RP *Powy Wiey eR” P are the weighting factors of the linear transformation, respectively.
\/% = ‘/DQuery is the scale factor that ensures the stability of the values[18]. R reflects the correlation between

multiple attributes internally.
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FIG. 3 INTER-ATTRIBUTE RELATIONSHIP FEATURE LEARNING

3.4 Inter-Attribute Relationship Graph Construction and Aggregation Attribute Learning

In order to learn the fusion features containing rich global and local attribute interrelationships, this section
constructs the inter-attribute relationship graph and learns the aggregated attribute features of each attribute from this
graph.

First, we construct the inter-attribute relationship graph for each moment by using the enhanced attribute features as
nodes and the inter-attribute relationship features as edges at each moment. The inter-attribute relationship graph of
each moment is stitched by time points to obtain the inter-attribute relationship graph G :(F, R) .

Next, the node information in the graph convolutional network inter-attribute relationship graph is aggregated using
to learn the aggregated attribute features H , which is calculated as shown in Equation (10).

HO = o (RH" (W) (10)

where, | denotes the number of layers of the graph convolutional network. (W )I is the coefficient of the first layer of
the graph convolutional network. 0'(-) denotes the activation function. H®is generated by the initialization G .
After the | layers’ graph convolutional neural network, the learned feature representation incorporates the time-
varying features of each attribute and the associated attribute features.
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3.5 Prediction Module

The aggregated attribute features obtained from the graphical convolutional neural network are fed into the MLP,

and the output of the MLP is the final prediction result{P, ,, Be,,,L , P, ior } -

4 EXPERIMENT
4.1 Dataset

The version of this template is VV2.6. Most of the formatting instructions in this document have been compiled from
LaTeX style files. This offers both A4 templates and US Letter templates for LaTeX and Microsoft Word.

The trajectory attributes we consider include longitude, latitude, altitude and airspeed. The flight data include the
waypoints (including time, longitude, latitude, altitude and airspeed) of the aircraft during the whole process from
take-off to landing. The units of longitude and latitude are degrees, the units of altitude are meters and the units of
speed are kilometres per hour.

Automatic Dependent Surveillance Broadcast (ADS-B) data is used to evaluate the performance of the AR-GCN.
ADS-B automatically obtains parameters from relevant on-board equipment and reports the aircraft's position,
altitude, speed, identification number, etc. to other aircraft or ground stations.

We downloaded the ADS-B data of several flights from the flightradar24 website. In the obtained ADS-B dataset,
the time intervals of the trajectory points are unequal. Therefore, in this paper, the original data are segmented and
the missing data are complemented by cubic spline interpolation, and the track point data are processed as equal time
interval data (track point interval is 50 seconds). The take-off and landing phases include a small number of pre-take-
off and post-landing taxiing records, which are not meaningful for the trajectory prediction problem, so this part of
the data is excluded. The trajectory data used in the experiments are shown in TABLE 1.

The flights included three flights with flight numbers CZ6180 (Beijing-Changchun), MU5435 (Hefei-Chengdu) and
DL528 (Washington-Atlanta). The flight data sets are as follows.

(1) Flight Cz6180 (Beijing-Changchun) flight data from April 15, 2022 to June 15, 2022, including 10 flights with a
total of 1,241 track points.

(2) Flight data for flight MU5435 (Hefei-Chengdu) between April 15, 2022 and June 15, 2022, including 10 flights
with 1,169 waypoints.

(3) Flight DL528 (Washington-Atlanta) from April 15, 2022 to June 15, 2022, including 10 flights with 1,595
waypoints.

All flights were divided into a training set (60%), a validation set (20%), and a test set (20%).

TABLE 1 DATASET OVERVIEW

Flight Number
CZ6180 (Beijing-Changchun) 10
MU5435 (Hefei-Chengdu) 10
DL528 (Washington-Atlanta) 10

4.2 Evaluation Indicators

Two commonly used performance metrics for evaluating track prediction methods are used in the experiments: Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE) to measure the accuracy of model prediction. The
MAE is the average of the absolute error between the predicted and actual values. The evaluation index is calculated
by the following formula.
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N 2

RMSE = Z(aim— ,m) (11)

=
N
MAE = %Z a'im - a‘-l[m
Where N denotes the total number of predicted Wayptl)ilnts, the predicted value of the first attribute on the first
waypoint, and the true value of the first attribute on the first waypoint. the smaller the value of RMSE and MAE, the
better the performance of the method. @, denotes the predicted value of the m -th attribute on the i -th trajectory
point, a[m indicates the true value of the m -th attribute on the i -th trajectory point. Smaller values of RMSE and
MAE indicate better performance of the method.

(12)

4.3 Parameter Setting

The prediction task in this paper is to predict the longitude, latitude, altitude, and velocity of one or more trajectory
points in the future, given K trajectory points.

In the experiment, K is set to 5, i.e., given the first 250 seconds of the 5 track points data. The embedding
dimension of the local attribute features is set to 64, and the Query and Key in Self-Attention, which calculates the
feature matrix of local attribute relationships, are set to 64 dimensions. The sizes of the convolution kernels used for
multi-scale convolution are 1x3, 1x4and 1x5. The Embedding in Self-Attention, which calculates the attribute-
relationship feature matrix, is set to 128 dimensions, and the Query and Key are set to 64 dimensions. The number of
layers of the convolutional network is set to 2, and the nonlinear activation function is ReLU function. In this paper,
the Adam optimizer [20] is used to minimize the mean absolute error MAE with a training period of 200 epochs and

an initial learning rate set to 0.001, decaying by 0.1 at 100 epoch intervals. experiments are implemented on Pytorch
[21],

4.4 Comparison Experiments
The AR-GCN is experimentally compared with the following three baseline methods.

LSTM [MI: a classical method for processing temporal data, a kind of recurrent neural network, which introduces a
gating component on the basis of RNN and overcomes the problem of RNN gradient disappearance or gradient
explosion to some extent.

Clustering-GRU [8]: abbreviated as C-GRU in the experiments, it is one of the most advanced track prediction
algorithms, combining clustering algorithm and GRU recurrent neural network to segment the whole track for
prediction.

CNN-LSTM [8l: one of the current advanced track prediction algorithms, which extracts the spatial and temporal
features of the track data using CNN and LSTM, respectively

The performance on the single-step prediction problem is shown in TABLE 2, where the best values are marked in
bold. The model in this paper outperforms the compared baseline model in terms of prediction accuracy for each
attribute on both evaluation metrics, MAE and RMSE.

Compared with LSTM, AR-GCN reduces MAE and RMSE by 9% and 16%, respectively, in longitude prediction,
28% and 23%, respectively, in latitude prediction, 20% and 21%, respectively, in elevation prediction, and 13% and
9%, respectively, in velocity prediction. LSTM model has advantages in capturing the temporal features of the
sequence of track points, but lacks the extraction of the information of each attribute within the track and the features
of the relationship between attributes, which is compensated by the model in this paper, and the prediction results
also show that the features of the attributes and the relationship between attributes extracted in this paper are
effective.

Compared with C-GRU, the MAE and RMSE of GLAR-GCN are reduced by 2% and 4% for longitude prediction,
6% and 17% for latitude prediction, 7% and 17% for altitude prediction, and 2% and 5% for speed prediction,
respectively. C-GRU combines the information of all attributes when extracting the features of each flight segment,
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but ignores the interrelationship between attributes, so it cannot provide accurate and rich trajectory representation to
the prediction module, which makes the prediction accuracy of C-GRU still needs to be improved.

Compared with CNN-LSTM, GLAR-GCN reduces MAE and RMSE by 8% and 5% for longitude prediction, 6%
and 17% for latitude prediction, 6% and 16% for elevation prediction, and 3% and 2% for velocity prediction,
respectively. CNN is mainly used to capture the spatial relationship between attributes, and LSTM is used to capture
the temporality between individual attributes, but they do not model the internal relationship between attributes,
which makes the learned feature information only consider the spatio-temporal characteristics of attributes in
isolation.

TABLE 2 SINGLE-STEP PREDICTION COMPARISON RESULTS (HORIZON=1)

Attribute

Methods Metrics Lon Lat Height Speed
LST™M MAE 0.0220 0.0260 147.027 7.948
RMSE 0.0351 0.0328 232.660 13.015
C-GRU MAE 0.0203 0.0197 125.490 6.917
RMSE 0.0303 0.0304 221.092 12,010
CNN-LSTM MAE 0.0217 0.0244 132.981 7.843
RMSE 0.0346 0.0297 223.841 12.732
AR-GCN MAE 0.0199 0.0186 117.537 6.890
RMSE 0.029%4 0.0252 184.228 11.905

The performance of the different models on the multi-step prediction problem is shown in [Table 3], where the best
values are marked in bold. The model in this paper also outperforms the compared baseline model in terms of
prediction accuracy for each attribute in both MAE and RMSE evaluation metrics.

Compared with the recurrent neural network-based prediction model, the model proposed in this paper reduces MAE
and RMSE by 11%-22% and 12%-21%, respectively, in longitude prediction, 6%-19% and 6%-13%, respectively, in
latitude prediction, 4%-15% and 4%-12%, respectively, in elevation prediction based on the internal relationship
between attributes and 4%-12%, respectively, and MAE and RMSE on velocity prediction were reduced by 2%-7%
and 1%-7%, respectively. The prediction accuracy of several models decreased as the prediction time increased, but
the performance of the prediction model based on inter-attribute relationships decreased less than that of the
prediction model based on recurrent neural networks. The experimental results show that the prediction model
considering inter-attribute interrelationship achieves better prediction results, indicating that inter-attribute
correlation is an important component of waypoint features, and therefore increasing the extraction of inter-attribute
relationship features can improve the model prediction.

By comparing the experimental results for prediction step 1 and prediction step 3, it can be seen that the performance
of AR-GCN decreases better with increasing prediction step than other compared algorithms, indicating that learning
only from inter-attribute correlations can provide the prediction module with richer information for long time
prediction.
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TABLE 2 SINGLE-STEP PREDICTION COMPARISON RESULTS (HORIZON=1)

| Attribute |

Methods Metrics ‘ Lon Lat Height Speed ‘
LST™M MAE 0.0358 0.0498 162.737 8.606
RMSE 0.0680 0.1103 291.054 15.293
C-GRU MAE 0.0316 0.0460 143.290 8.175
RMSE 0.0663 0.1082 263.548 14373
CNN-LSTM MAE 0.0325 0.0427 158.621 8.213
RMSE 0.0608 0.1020 285.841 14277
AR-GCN MAE 0.0279 0.0401 137.537 8.045
RMSE 0.0595 0.0958 253.228 14.197

CONCLUSIONS

In this paper, a graph convolutional network (AR-GCN) based on inter-attribute intra-relationship is proposed to
solve the flight trajectory prediction problem. The network first extracts the temporal features of each attribute and
fuses them with the original features of the attribute to obtain the enhanced attribute features, and extracts the
implicit relationship between the attributes as the inter-attribute relationship features; secondly, the enhanced
attribute features are used as nodes and the inter-attribute relationship features are used as edges to construct the
inter-attribute relationship graph; finally, the graph convolutional network is used to aggregate the attribute features.
Based on the full fusion of the above features, high accuracy prediction of trajectories is achieved. In this paper,
single-step and multi-step experiments are conducted on real flight track data, and the experimental results show that
the prediction accuracy is improved by outperforming the comparison algorithm in all evaluation indexes.
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