您所在的位置: 首页 >> 期刊 >> 应用物理前沿

应用物理前沿

《应用物理前沿》是IVY出版社旗下的一本关注应用物理理论及技术发展的国际期刊,是评述应用物理理论与现代工业技术相结合的综合性专业学术刊物。主要刊登有关应用物理理论,及其在自然科学、工程技术、经济和社会等各领域内的最新研究进展的学术性论文和评论性文章,报道应用物理领域的最新科研成果,旨在为该领域内的专家、学者、科研人员提供一个良好的传播、分享和探讨应用物理进展的交流平台,反映学术前沿水平,促进学术交流,推进应用物理理论和技术方法的发展。本刊…… 【更多】 《应用物理前沿》是IVY出版社旗下的一本关注应用物理理论及技术发展的国际期刊,是评述应用物理理论与现代工业技术相结合的综合性专业学术刊物。主要刊登有关应用物理理论,及其在自然科学、工程技术、经济和社会等各领域内的最新研究进展的学术性论文和评论性文章,报道应用物理领域的最新科研成果,旨在为该领域内的专家、学者、科研人员提供一个良好的传播、分享和探讨应用物理进展的交流平台,反映学术前沿水平,促进学术交流,推进应用物理理论和技术方法的发展。

本刊可接收中、英文稿件。其中,中文稿件要有详细的英文标题、作者、单位、摘要和关键词。初次投稿请作者按照稿件模板排版后在线投稿。稿件会经过严格、公正的同行评审步骤,录用的稿件首先发表在本刊的电子刊物上,然后高质量印刷发行。期刊面向全球公开征稿、发行,要求来稿均不涉密,文责自负。

ISSN Print:2327-4131

ISSN Online:2327-4212

Email:apf@ivypub.org

Website: http://www.ivypub.org/apf/

  0
  0

Paper Infomation

Study on Dynamic Behaviors of Weld Pool and Keyhole in Laser Deep Penetration Welding

Full Text(PDF, 1659KB)

Author: Qiang Wan, Pingan Shi, Yongsheng Pang, Xianfeng Shen, Wenhua Teng, Yixia Yan, Heng Xu

Abstract: In order to accurately simulate the dynamic process of keyhole formation during laser deep penetration welding, a ray tracing method based on Particle level set method is proposed to describe the multiple reflections Fresnel absorption effect of keyhole wall on laser energy, and a three-phase unification mathematical model of laser keyhole welding is established to combine the effects of three dimensional transient keyhole and transient weld pool. Dynamic process of keyhole formation and its corresponding temperature and flow field distributions are obtained by numerical modeling of laser deep penetration welding process of 30CrMnSiA steel. The results shows that the depth and shape of keyhole have an obvious characteristic of periodic changes and a phenomenon of high frequency oscillations in process of laser deep penetration welding, and the high frequency oscillations of keyhole is the main factors of laser welding instability and defects forming. Through comparative analysis of the images of weld pool and keyhole obtained by the dynamic monitoring system and the macrograph of welding seam, the results show that the experiment result is in accordance with the simulation one approximately and the simulation method and the mathematical model can accurately simulate the dynamic process of keyhole formation during laser deep penetration welding.

Keywords: Deep Penetration Laser Welding; Keyhole; Dynamic Behavior; Numerical Simulation

References:

[1] 张林杰, 张建勋, 巩水利. 激光深熔焊接过程中小孔行为的研究进展[J]. 激光杂志, 2009, 30(5): 3-5

[2] R Fabbro and K Chouf. Keyhole behavior for deep penetration laser welding[C]. Proceeding of ICALEO, 1999, 92-101

[3] V V Semak, R J Steele, P W Fuerschbach and B K Damkroge. Role of beam absorption in plasma during laser welding[J]. J. Phy D: Appl. Phys., 2000, 33: 1179-1185

[4] Ki H, Mohanty PS, Mazumder J. Modeling of laser keyhole welding: Part I. Mathematical modeling, numerical methodology, role of recoil pressure, multiple reflections, and free surface evolution. Metallurgical and Materials Transactions A, 2001, 33: 1817-1830

[5] Ki H, Mohanty P S, Mazumder J. Modeling of laser keyhole welding: Part II. Simulation of keyhole evolution, velocity, temperature profile, and experimental verification[J]. Metallurgical and Materials Transactions A, 2001, 33: 1831-1842

[6] Wang R P, Lei Y P, Shi Y W, et al. Three dimensional transient model of keyhole dynamics during laser deep penetration welding. Proceedings of the 3rd International Conference on Power Beam Processing Technologies, Beijing, China, 2010

[7] 金湘中, 鄢锉. 激光深熔焊接小孔内等离子体的反韧致辐射吸收研究[J]. 湖南大学学报, 2003, 30(6): 45-50

[8] 庞盛永, 陈亮, 陈涛, 等. 激光深熔焊接任意形状小孔的能量密度计算[J]. 激光技术, 2010, 34(5): 614-618

[9] Fujinaga S, Takenaka H, Narikiyo T, et al. Direct observation of keyhole behaviour during pulse modulated high-power Nd: YAG laser irradiation. Journal of Physics D: Applied Physics, 2000, 33 (5): 492-497

[10] Matsunawa A, Kim J D, Seto N, et al. Dynamics of keyhole and molten pool in laser welding. Journal of Laser Applications, 1998, 10(6): 247-254

[11] Seto N, Katayama S, Matsunawa A. High-speed simultaneous observation of plasma and keyhole behavior during high power CO2 laser welding: Effect of shielding gas on porosity formation. Journal of Laser Applications, 2000, 12 (6): 245-250

[12] Katayama S, N Seto, J Kim and Matsunawa A. Formation mechanism of porosity in high power laser welding, ICALEO, 2000, section C: 16-25

[13] 杨家林, 高进强, 秦国梁, 等. 基于视觉的激光深熔焊熔池检测及图像处理[J]. 焊接学报, 2011, 32(11): 21-24

[14] Shen Xianfeng, Liu Shijie. Characterization of Weld Pool and Keyhole in Gas-Jet-assisted Keyhole Laser Welding. Rare Metal Materials and Engineering, 2013, 42(S2): 001-005

Privacy Policy | Copyright © 2011-2024 Ivy Publisher. All Rights Reserved.

Contact: customer@ivypub.org