您所在的位置: 首页 >> 期刊 >> 应用物理前沿

应用物理前沿

《应用物理前沿》(Applied Physics Frontier)(年刊)是IVY出版社旗下的一本关注应用物理理论及技术发展的国际期刊,是评述应用物理理论与现代工业技术相结合的综合性专业学术刊物。主要刊登有关应用物理理论,及其在自然科学、工程技术、经济和社会等各领域内的最新研究进展的学术性论文和评论性文章,报道应用物理领域的最新科研成果,旨在为该领域内的专家、学者、科研人员提供一个良好的传播、分享和探讨应用物理进展的交流平台,反映学术前沿水平,促进学术交流,推进应用物理理论和…… 【更多】 《应用物理前沿》(Applied Physics Frontier)(年刊)是IVY出版社旗下的一本关注应用物理理论及技术发展的国际期刊,是评述应用物理理论与现代工业技术相结合的综合性专业学术刊物。主要刊登有关应用物理理论,及其在自然科学、工程技术、经济和社会等各领域内的最新研究进展的学术性论文和评论性文章,报道应用物理领域的最新科研成果,旨在为该领域内的专家、学者、科研人员提供一个良好的传播、分享和探讨应用物理进展的交流平台,反映学术前沿水平,促进学术交流,推进应用物理理论和技术方法的发展。

本刊可接收中、英文稿件。其中,中文稿件要有详细的英文标题、作者、单位、摘要和关键词。初次投稿请作者按照稿件模板排版后在线投稿。稿件会经过严格、公正的同行评审步骤,录用的稿件首先发表在本刊的电子刊物上,然后高质量印刷发行。期刊面向全球公开征稿、发行,要求来稿均不涉密,文责自负。

ISSN Print:2327-4131

ISSN Online:2327-4212

Email:apf@ivypub.org

Website: http://www.ivypub.org/apf/

  0
  0

Paper Infomation

A Novel Finite Volume Scheme with Geometric Average Method for Radiative Heat Transfer Problems

Full Text(PDF, 1152KB)

Author: Cunyun Nie, Haiyuan Yu

Abstract: We construct a novel finite volume scheme by innovatively introducing the weighted geometric average method for solving three multi-material radiative heat transfer problems, and compare it with the weighted arithmetic and harmonic average methods, respectively. We also put forward the effect of the convexity of nonlinear diffusion functions. Then, we present a cylinder symmetric finite volume element (SFVE) scheme for the three-dimensional problem by transferring it to a two-dimensional one with the axis symmetry. Numerical experiments reveal that the convergent order is less than two, and numerical stimulations are valid and rational, and confirm that the new scheme is agreeable for solving radiative heat transfer problems.

Keywords: Finite volume scheme ; Weighted geometric average method ; Radiative heat transfer problems; Convexity of diffusion functions.

References:

[1] A. Jafari, S.H. Seyedein and M. Haghpanahi, Modeling of heat transfer and solidification of droplet/substrate in microcasting SDM process, International Journal of Engineering Science,18(2008): 187-198

[2] C. L. Zhai, W.B. Pei, Q.H, Zeng. 2D LARED-H simulation of ignition hohlraum, In Proc. the World Congress on Engineering 2010(III) WCE 2010, London, U.K

[3] H. B. James, J.T. King, A finite element method for interface problems in domains with smooth boundaries and interfaces, Adv. Comp. Math., 6(1996): 109-138

[4] Z. M. Chen, J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math., 79(1998): 175-202

[5] S.V. Patankar. Numerical heat transfer and fluid flow. Hemisphere, New York, (1980)

[6] S.Y. Kadioglu, R. R. Nourgaliev and V. A. Mousseau, A comparative study of the harmonic and arithmetic averaging of diffusion coefficients for nonlinear heat transfer problem, Idaho National Laboratory, March, 2008

[7] S.B. Yuste, Weighted average finite difference methods for fractional diffusion equations, Journal of Computational Physics 216(2006): 264-274

[8] C. Y. Nie, S. Shu, Z.Q. Sheng, A Symmetry-preserving finite volume element scheme on unstructured quadrilateral grids, Chinese J. Comp. Phys. 26(2009): 17-22

[9] A. G. Hansen, M.P. Bendsoe, and O. Sigmund. Topology optimazation of heat transfer problems using the finite volume method. Struct.Multidisc. Optim, 31(2006): 251-259

[10] G. L. Olson and J. E. Morel. Solution of the radiation diffusion equation on an AMR eulerian mesh with material interface. In Technical Report LA-UR-99-2949, 1999. Los Alamos National Laboratory

[11] D. A. Knoll and D. E. Keyes. Jacobien-free newton krylov methods: a survey of approaches and applications. J. Comput. Phys., 4(2004): 357-397

[12] R.E. Marshak, Effect of radiation on shock wave behavior, Phys. Fluids, 1(1958): 24-29

[13] J.Y Yue, G.W. Yuan, Z.Q. Sheng, Picard-Newton iterative method for multimaterial nonequilibrium radiation diffusion problem on distorted quadrilateral meshes in: Proc. the World Congress on Engineering (II), WCE 2009, London, U.K

[14] C.Y. Nie, S. Shu, X.D. hang and J. Chen, SFVE schemes for radiative heat transfer problems in cylindrical coordinates and numerical simulation, Journal of System Simulation, 24(2012): 275-283

[15] S. Toader and G. Toader, Symmetries with Greek means, Creative Math. 13(2004): 17-25

Privacy Policy | Copyright © 2011-2021 Ivy Publisher. All Rights Reserved.

Contact: customer@ivypub.org