English 设为首页 加入收藏
ISSN Print:2327-0519
ISSN Online:2327-0527
Email:mc@ivypub.org
Website: http://www.ivypub.org/mc/
+ 首页
+ 期刊领域
+ 编委会
+ 投稿指南
+ 稿件流程
+ 常见问题
+ 过刊浏览
+ 最新文章
+ 申请编委
+ 申请审稿人
+ 联系编辑社
Study on the Problem of “Catenary Pendulum”
Full Text(PDF, 2073KB)
Author: Changrun Zhao
Abstract: The study of the “catenary pendulum” problem reveals intrinsic connections between the catenary curve and the brachistochrone (cycloid), leading to three key conclusions: (i) Among pendulums of equal length—the catenary pendulum, simple pendulum, and compound pendulum—the catenary pendulum exhibits the shortest oscillation period. (ii) The motion of the system's center of mass forms a brachistochrone curve, which constitutes the fundamental dynamic characteristic of the catenary pendulum. Notably, the midpoint of the rope has a significantly smaller amplitude than the system's center of mass. (iii) The free end of the catenary pendulum (its terminal point) represents the most dynamically active particle. Its trajectory forms an arc-shaped elliptical orbit symmetric with respect to the y-axis.
Keywords: Catenary Pendulum; Catenary; Optimal Sag; Cycloid; Rolling Circle's Initial Contact Angle
References:[1] 周衍柏.理论力学.高等教育出版社, 1985.125-128[2] 郭大钧.大学数学手册.山东科学技术出版社,1985.487-487[3] 周培源.理论力学.人民教育出版社,1952.287-289[4] 华罗庚.高等数学引论(第二分册).科学出版,1963.13-14[5] B.И.斯米尔诺夫著孙念增译,高等数学教程(第一卷).人民教育出版社, 1979.180-183[6] 赵凯华.定性与半定量物理学.高等教育出版社,1991.1-6[7] 赵长润.椭圆周长的初等公式.数学计算(中英文版),2023, 11(2): 7-20.
Privacy Policy | Copyright © 2011-2025 Ivy Publisher. All Rights Reserved.
Contact: customer@ivypub.org