您所在的位置: 首页 >> 期刊 >> 机械工程与设计

机械工程与设计

《机械工程与设计》(Mechanical Engineering and Design)(年刊)是IVY出版社旗下的一本关注机械工程理论与技术应用发展的国际期刊,是机械理论与现代工业技术相结合的综合性学术刊物。主要刊登有关机械工程设计理论,及其在自然科学、工程技术、经济和社会等各领域内的最新研究进展的学术性论文和评论性文章。旨在为该领域内的专家、学者、科研人员提供一个良好的传播、分享和探讨机械工程技术理论进展的交流平台,反映学术前沿水平,促进学术交流,推进机械制造、机械技术理论和技术研…… 【更多】 《机械工程与设计》(Mechanical Engineering and Design)(年刊)是IVY出版社旗下的一本关注机械工程理论与技术应用发展的国际期刊,是机械理论与现代工业技术相结合的综合性学术刊物。主要刊登有关机械工程设计理论,及其在自然科学、工程技术、经济和社会等各领域内的最新研究进展的学术性论文和评论性文章。旨在为该领域内的专家、学者、科研人员提供一个良好的传播、分享和探讨机械工程技术理论进展的交流平台,反映学术前沿水平,促进学术交流,推进机械制造、机械技术理论和技术研究的发展。

本刊可接收中、英文稿件。其中,中文稿件要有详细的英文标题、作者、单位、摘要和关键词。初次投稿请作者按照稿件模板排版后在线投稿。稿件会经过严格、公正的同行评审步骤,录用的稿件首先发表在本刊的电子刊物上,然后高质量印刷发行。期刊面向全球公开征稿、发行,要求来稿均不涉密,文责自负。

ISSN Print:2327-0543

ISSN Online:2327-0624

Email:med@ivypub.org

Website: http://www.ivypub.org/med/

  0
  0

Paper Infomation

The Effect of Creep on Stress and Strain Fields nearby Crack Tip

Full Text(PDF, 645KB)

Author: Fuqiang Yang, He Xue

Abstract: Stress and strain nearby crack tip are key factors in quantitatively predicting the growth rate of stress corrosion cracking (SCC). Metals will creep in high temperature water environments, which will lead to the variation of stress and strain distribution nearby crack tip and affect the SCC growth rate. The effects of creep on the stress and strain fields nearby crack tip are studied with one inch compact tension (1T-CT) specimen by finite element method in this paper. The results indicate that the stress nearby crack tip reduces dramatically because of the action of creep, but the variation of strain and plastic zone nearby the crack tip are insignificant.

Keywords: Creep; Crack Tip; Stress; Strain; Finite Element Method

References:

[1] USNRC. Crack in Weld Area of Reactor Coolant System Hot Leg Piping at V.C. Summer[R]. Washington, D.C.: USNRC, Office of Nuclear Reactor Regulation, 2000.

[2] USNRC. Davis-Besse Reactor Pressure Vessel Head Degradation [R]. NUREG/BR-0353, Rev.1. Washington, D.C.: USNRC, August 2008.

[3] O.K. Chopra, H.M. Chung, T.F. Kassner, et al. Current Research on Environmentally Assisted Cracking in Light Water Reactor Environments [J]. Nuclear Engineering and Design, 1999, 194(2-3): 205-223.

[4] J. Heldt, H.P. Seifert. Stress Corrosion Cracking of Low-alloy, Reactor-pressure Vessel Steels in Oxygenated, High-temperature Water [J]. Nuclear Engineering and Design, 2001, 206 (1): 57-89.

[5] Y. Sato, H. Xue, Y. Takeda, et al. Development of a Stress Corrosion Cracking Test Methodology Using Tube-shaped Specimens[J]. ASTM International-Journal of Testing and Evaluation. 2007, 35(3):254-258.

[6] X.Y. Gong, K. Jiao, L.Y. Zhao, et al. Effect of Welded Mechanical Heterogeneity on Fracture Parameters of Pipe Line Cracks [J]. Journal of Xi’an University of Science and Technology, 2013, 33(2): 211-215.

[7] F.P. Ford. Mechanisms of Environmentally-assisted Cracking [J]. International Journal of Pressure Vessels and Piping, 1989, 40(55):343-362.

[8] H. Xue, T. Shoji. Quantitative Prediction of EAC Crack Growth Rate of Sensitized Type 304 Stainless Steel in Boiling Water Reactor Environments Based on EPFEM [J]. Journal of Pressure Vessel Technology, Transactions of the ASME, 2007, 129(3):460-467.

[9] H. Xue, K. Ogawa, T. Shoji. Effect of Welded Mechanical Heterogeneity of Local Stress and Strain ahead of Stationary and Growing Crack Tips [J]. Nuclear Engineering and Design, 2009, 239(4):628-640.

[10] ASTM Standard E399-90. Standard Test Method for Plane Strain Fracture Toughness of Metallic Materials [S]. In: Annual Book of ASTM Standards. USA: ASTM International, 2002.

[11] Kim JR Rasmussen. Full-range Stress-strain Curves for Stainless Steel Alloys [R]. Research Report R811. Australia: Department of Civil Engineering, the University of Sydney, Sydney, November 2001.

[12] Dassault Systèmes Simulia Corp. Abaqus analysis user's manual 6.12[EB/CD], 2012.

[13] X.R. Fang. Study on the Effects of Small Crack Tip Mechanics Field for the Stress Cession Cracking of Key Structural Materials in Nuclear Power Plants [D]. Xi’an: Xi’an University of Science and Technology, 2013.

[14] M. Rieth, A. Falkenstein, P. Graf, et al. Creep of the Austenitic Steel AISI 316L (N): Experiment and Models [R]. Report FZKA-7065. Germany: Forschungszentrum Karlsruhe, November 2004.

[15] F.Q. Yang, H. Xue, L.Y. Zhao, et al. Calculations and modeling of material constants in hyperbolic-sine creep model for 316 stainless steels [J]. Applied Mechanics and Materials, 2013, 457-458:185.

Privacy Policy | Copyright © 2011-2020 Ivy Publisher. All Rights Reserved.

Contact: customer@ivypub.org