您所在的位置: 首页 >> 期刊 >> 材料科学研究

材料科学研究

《材料科学研究》是IVY出版社旗下的一本关注材料科学及工艺技术发展的国际期刊,是评述材料学理论与现代工业技术相结合的综合性专业学术刊物。主要刊登有关材料学科理论、工艺,及其在自然科学、工程技术、经济和社会等各领域内的最新研究进展的学术性论文和评论性文章,报道材料学科领域内的最新科研成果,旨在为该领域内的专家、学者、科研人员提供一个良好的传播、分享和探讨材料学科理论及技术发展的交流平台,反映学术前沿水平,促进学术交流,推进材料学理论和工艺技术的快速发展…… 【更多】 《材料科学研究》是IVY出版社旗下的一本关注材料科学及工艺技术发展的国际期刊,是评述材料学理论与现代工业技术相结合的综合性专业学术刊物。主要刊登有关材料学科理论、工艺,及其在自然科学、工程技术、经济和社会等各领域内的最新研究进展的学术性论文和评论性文章,报道材料学科领域内的最新科研成果,旨在为该领域内的专家、学者、科研人员提供一个良好的传播、分享和探讨材料学科理论及技术发展的交流平台,反映学术前沿水平,促进学术交流,推进材料学理论和工艺技术的快速发展。

本刊可接收中、英文稿件。其中,中文稿件要有详细的英文标题、作者、单位、摘要和关键词。初次投稿请作者按照稿件模板排版后在线投稿。稿件会经过严格、公正的同行评审步骤,录用的稿件首先发表在本刊的电子刊物上,然后高质量印刷发行。期刊面向全球公开征稿、发行,要求来稿均不涉密,文责自负。

ISSN Print:2327-0470

ISSN Online:2327-0489

Email:rms@ivypub.org

Website: http://www.ivypub.org/rms/

  0
  0

Paper Infomation

Magnetic Defect in Phosphorene Nanoribbons

Full Text(PDF, 358KB)

Author: Qimin Cheng, Wei Sheng, Lingxi Wu, Chun Hu

Abstract: Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. Defects are inevitably present in materials and always can affect their properties. In this work, we employed first principles density functional theory calculations to study the quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR)single and double SV- (5/9) vacancy defects. We find that these defects are all created quite easily in phosphorene nanoribbons. We find that these defects are all quite easily to deal with in phosphorene with higher areal density. With SV (5/9) existing, introduces unoccupied localized states into phosphorene's fundamental band gap half metal character, close the band gap and causing a turning from semiconductor to conductor, which are verified with Band structure picture or Projected density of states and all these disparities due to the atom which possesses one suspension bond. Specifically, the Sv-(5/9) can introduce unoccupied localized states into phosphorene's fundamental band gap.

Keywords: Phosphorene Nanoribbons, Defect State, First Principles Calculation, Electronic Structure, Magnetic Materials

References:

[1] Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences, 2005, 102(30):10451-10453.

[2] Kar M, Sarkar R, Pal S, et al. Edge Modified Phosphorene Antidot Nanoflakes and Their van der Waals.

[3] Heterojunctions for Solar Cell Applications[J]. The Journal of Physical Chemistry C, 2019, 123(34).

[4] Osada M, Sasaki T. Two-Dimensional Dielectric Nanosheets: Novel Nanoelectronics From Nanocrystal Building Blocks[J]. Advanced Materials, 2012, 24(2): p.210-228.

[5] Xu M, Liang T, Shi M, et al. Graphene-Like Two-Dimensional Materials[J]. Chemical Reviews, 2013, 113(5):3766-3798.

[6] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.

[7] Liu Y C, Ren H T, Gao P F, et al. Flexible modulation of electronic and magnetic properties of zigzag H-MoS2 nanoribbons by crack defects[J]. Journal of Physics Condensed Matter, 2018, 30(28):285302-.

[8] Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal[J]. Nature Materials, 2004, 3(6):404-409.

[9] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3):147-150.

[10] Hu W, Li Z, Yang J. Structural, electronic, and optical properties of hybrid silicene and graphene nanocomposite[J]. Journal of Chemical Physics, 2013, 139(15):154704.

[11] Kresse G, Jü. Hafner. Ab Initio Molecular Dynamics for Liquid Metals[J]. Physical review. B, Condensed matter, 1993, 47(1):558-561.

[12] Liu Y, Xu F, Zhang Z, et al. Two-Dimensional Mono-Elemental Semiconductor with Electronically Inactive Defects: The Case of Phosphorus[J]. Nano Letters, 2014, 14(12):6782.

[13] Leenaerts O, Partoens B, Peeters F M. Graphene: A Perfect Nanoballoon[J]. Applied Physicsletters, 2008, 93(19):267-269.

[14] John P. Perdew, Kieron Burke, Matthias Ernzerhof. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters, 1996.

Privacy Policy | Copyright © 2011-2024 Ivy Publisher. All Rights Reserved.

Contact: customer@ivypub.org