Paper Infomation
Synthesis Algorithm for Dynamic Binaural Room Impulse Responses
Full Text(PDF, 467KB)
Author: Haokun Hong, Shaobo Wu
Abstract: Current methods for constructing spatial reverberant sound fields required extensive measurements of binaural room impulse responses (BRIRs) or relied on interpolation of multiple spatial room impulse responses (SRIRs), which were time-consuming and computationally intensive. To address these limitations, this paper proposed a lightweight dynamic BRIR synthesis algorithm based on monophonic room impulse responses (RIRs). The algorithm separately processed direct sound, early reflections, and late diffuse reverberation by combining the image source method (ISM) and an auto-regressive moving average (ARMA) model, enabling efficient dynamic BRIR synthesis. Experimental results demonstrated that the proposed method achieved a root mean square error (RMSE) of 0.2 ms for early reflection arrival times, showed an average deviation of 3.7% in reverberation time (RT₆₀) across full frequency bands, and maintained binaural coherence (IC) below 0.05. The results indicate that the proposed synthesis method effectively balances computational efficiency and spatial acoustic accuracy.
Keywords: Binaural Room Impulse Response; Monophonic Room Impulse Response; Dynamic Synthesis; Auto-Regressive Moving Average Model
References:
[1] Neidhardt A, Schneiderwind C, Klein F. Perceptual matching of room acoustics for auditory augmented reality in small rooms-literature review and theoretical framework[J]. Trends in Hearing, 2022, 26: 23312165221092919.
[2] 魏永健,周静雷.基于人体测量参数的个性化HRTF建模[J].电工技术,2024,(18):118-122.DOI:10.19768/j.cnki.dgjs.2024.18.033.
[3] Zhao J, Zheng X, Ritz C, et al. Interpolating the directional room impulse response for dynamic spatial audio reproduction[J]. Applied Sciences, 2022, 12(4): 2061.
[4] Sanaguano-Moreno D, Lucio-Naranjo J F, Tenenbaum R A, et al. Rapid BRIR generation approach using Variational Auto-Encoders and LSTM neural networks[J]. Applied Acoustics, 2024, 215: 109721.
[5] Garı S V A. The spatial decomposition method meets wave field synthesis: A feasibility study[J]. Proc. 50. Jahrestagung Für Akustik (DAGA 2024), 2024: 1630-1633.
[6] Allen J B, Berkley D A. Image method for efficiently simulating small‐room acoustics[J]. The Journal of the Acoustical Society of America, 1979, 65(4): 943-950.
[7] Pörschmann C, Zebisch A. Psychoakustische Untersuchungen zu synthetischem diffusen Nachhall Psychoacoustic Investigations on synthetically created diffuse Reverberation[J]. Proc. of the 27th Tonmeistertagung-VDT Int. Conv, 2012: 539-550.
[8] Brinkmann F, Gamper H, Raghuvanshi N, et al. Towards encoding perceptually salient early reflections for parametric spatial audio rendering[C]//Audio Engineering Society Convention 148. Audio Engineering Society, 2020.
[9] Coleman P, Franck A, Jackson P J B, et al. Object-based reverberation for spatial audio[J]. Journal of the Audio Engineering Society, 2017, 65(1/2): 66-77.
[10] 吴礼福,陶明明,郭业才.频域合成房间频率响应的人工混响方法[J].应用声学,2020,39(02):163-168.
[11] Speech dereverberation[M]. Springer Science & Business Media, 2010.
[12] Leglaive S, Badeau R, Richard G. Autoregressive moving average modeling of late reverberation in the frequency domain[C]//2016 24th European Signal Processing Conference (EUSIPCO). IEEE, 2016: 1478-1482.
[13] Bacila B I, Lee H. 360 binaural room impulse response (BRIR) database for 6dof spatial perception research[C]//Audio Engineering Society Convention 146. Audio Engineering Society, 2019.
[14] Johnson D, Harker A, Lee H. HAART: a new impulse response toolbox for spatial audio research[J].Journal of The Audio Engineering Society, 2015.
[15] Menzer F, Faller C. Stereo-to-Binaural Conversion Using Interaural Coherence Matching[C]//AES 128th Convention.2010.DOI:10.11 11/j.1463-1326.2011.01431.x.
[16] GB/T 36075.1-2018,声学 室内声学参量测量 第1部分:观演空间[S].