您所在的位置: 首页 >> 期刊 >> 计算机科学与技术汇刊

计算机科学与技术汇刊

《计算机科学与技术汇刊》是IVY出版社旗下的一本关注计算机理论与技术应用发展的国际期刊,是计算机理论与现代工业技术相结合的综合性学术刊物。主要刊登有关计算机理论,及其在自然科学、工程技术、经济和社会等各领域内的最新研究进展的学术性论文和评论性文章。旨在为该领域内的专家、学者、科研人员提供一个良好的传播、分享和探讨计算机理论与技术进展的交流平台,反映学术前沿水平,促进学术交流,推进计算机理论和应用技术的发展。本刊可接收中、英文稿件。其中,中…… 【更多】 《计算机科学与技术汇刊》是IVY出版社旗下的一本关注计算机理论与技术应用发展的国际期刊,是计算机理论与现代工业技术相结合的综合性学术刊物。主要刊登有关计算机理论,及其在自然科学、工程技术、经济和社会等各领域内的最新研究进展的学术性论文和评论性文章。旨在为该领域内的专家、学者、科研人员提供一个良好的传播、分享和探讨计算机理论与技术进展的交流平台,反映学术前沿水平,促进学术交流,推进计算机理论和应用技术的发展。

本刊可接收中、英文稿件。其中,中文稿件要有详细的英文标题、作者、单位、摘要和关键词。初次投稿请作者按照稿件模板排版后在线投稿。稿件会经过严格、公正的同行评审步骤,录用的稿件首先发表在本刊的电子刊物上,然后高质量印刷发行。期刊面向全球公开征稿、发行,要求来稿均不涉密,文责自负。

ISSN Print:2327-090X

ISSN Online:2327-0918

Email:cst@ivypub.org

Website: http://www.ivypub.org/cst/

  0
  0

Paper Infomation

Research on Anti-UAV Visual Detection Method Based on Deep Learning

Full Text(PDF, 1548KB)

Author: Yinggang Liang, Shaobo Wu

Abstract: The illegal intrusion of drones poses a significant threat to daily life and societal security. Existing methods that rely on microwave radar and machine learning are not effective in detecting low, slow, and small drone targets. For this reason, this paper proposes a deep learning-based anti-drone visual detection method. The DETR model is employed to identify high-altitude multi-scene drone targets. Specifically, a deformable attention module is introduced into the DETR model to enhance the detection accuracy of small target drones. To reduce the model's parameter count while maintaining detection accuracy and fulfilling the real-time requirements for unmanned aerial vehicles, the ShuffleNet V2 model is utilized to optimize the DETR backbone network. Furthermore, a mixed attention mechanism is incorporated. Experimental results demonstrate that the improved model achieves an average accuracy increase of 2.4% compared to the original DETR model (mAP@0.5), with a 5.9% enhancement in small target detection accuracy. The lightweight improvements made to the model backbone network reduce the parameter count from 66.5Mb to 43.8Mb, resulting in improved detection speed and meeting the real-time and deployment requirements of the drone detection model.

Keywords: Anti-UAV, Deep Learning, Target Detection, DETR, Lightweight

References:

[1] Fan Z, Gao X, Jin Y, et al. Research on Route Planning of Group UAV Cooperation for Deception Jamming to Radar Network[C]// IEEE Information Technology, Networking, Electronic and Automation Control Conference. IEEE, 2020.

[2] Jiang C, Fang Y, Zhao P, et al. Intelligent UAV Identity Authentication and Safety Supervision based on Behavior Modeling and Prediction[J]. IEEE Transactions on Industrial Informatics, 2020, PP (99):1-1.

[3] Viola P, Jones M J. Robust real-time face detection[J]. International journal of computer vision, 2004, 57: 137-154.

[4] Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05). Ieee, 2005, 1: 886-893

[5] Felzenszwalb P F, Girshick R B, McAllester D, et al. Object detection with discriminatively trained part-based models[J]. IEEE transactions on pattern analysis and machine intelligence, 2009, 32(9): 1627-1645.

[6] Nalamati M, Kapoor A, Saqib M, et al. Drone detection in long-range surveillance videos[C]//2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2019: 1-6.

[7] Garcia A J, Lee J M, Kim D S. Anti-drone system: A visual-based drone detection using neural networks[C]//2020 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2020: 559-561.

[8] Xun D T W, Lim Y L, Srigrarom S. Drone detection using YOLOv3 with transfer learning on NVIDIA Jetson TX2[C]//2021 Second International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP). IEEE, 2021: 1-6.

[9] 薛珊,张亚亮,吕琼莹等.复杂背景下的反无人机系统目标检测算法[J].吉林大学学报(工学版), 2023,53(03):891-901.DOI:10.13229/j.cnki.jdxbgxb.20221288.

[10] Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]//European conference on computer vision. Cham: Springer International Publishing, 2020: 213-229.

[11] Zhu X. Su W, Lu L, et al. Deformable detr: Deformable transformers for end-to-end object detection[J]. arXiv preprintarXiv:2010.04159.2020

[12] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125.

[13] Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 116-131.

[14] Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-19.

[15] Zhao J, Zhang J, Li D, et al. Vision-based anti-uav detection and tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25323-25334.

Privacy Policy | Copyright © 2011-2025 Ivy Publisher. All Rights Reserved.

Contact: customer@ivypub.org