您所在的位置: 首页 >> 期刊 >> 计算机科学与技术汇刊

计算机科学与技术汇刊

《计算机科学与技术汇刊》是IVY出版社旗下的一本关注计算机理论与技术应用发展的国际期刊,是计算机理论与现代工业技术相结合的综合性学术刊物。主要刊登有关计算机理论,及其在自然科学、工程技术、经济和社会等各领域内的最新研究进展的学术性论文和评论性文章。旨在为该领域内的专家、学者、科研人员提供一个良好的传播、分享和探讨计算机理论与技术进展的交流平台,反映学术前沿水平,促进学术交流,推进计算机理论和应用技术的发展。本刊可接收中、英文稿件。其中,中…… 【更多】 《计算机科学与技术汇刊》是IVY出版社旗下的一本关注计算机理论与技术应用发展的国际期刊,是计算机理论与现代工业技术相结合的综合性学术刊物。主要刊登有关计算机理论,及其在自然科学、工程技术、经济和社会等各领域内的最新研究进展的学术性论文和评论性文章。旨在为该领域内的专家、学者、科研人员提供一个良好的传播、分享和探讨计算机理论与技术进展的交流平台,反映学术前沿水平,促进学术交流,推进计算机理论和应用技术的发展。

本刊可接收中、英文稿件。其中,中文稿件要有详细的英文标题、作者、单位、摘要和关键词。初次投稿请作者按照稿件模板排版后在线投稿。稿件会经过严格、公正的同行评审步骤,录用的稿件首先发表在本刊的电子刊物上,然后高质量印刷发行。期刊面向全球公开征稿、发行,要求来稿均不涉密,文责自负。

ISSN Print:2327-090X

ISSN Online:2327-0918

Email:cst@ivypub.org

Website: http://www.ivypub.org/cst/

  0
  0

Paper Infomation

Optimization of Robotic Arm Grasping Strategy Based on Deep Reinforcement Learning

Full Text(PDF, 30KB)

Author: Dongjun He

Abstract: In recent years, robotic arm grasping has become a pivotal task in the field of robotics, with applications spanning from industrial automation to healthcare. The optimization of grasping strategies plays a crucial role in enhancing the effectiveness, efficiency, and reliability of robotic systems. This paper presents a novel approach to optimizing robotic arm grasping strategies based on deep reinforcement learning (DRL). Through the utilization of advanced DRL algorithms, such as Q-Learning, Deep Q-Networks (DQN), Policy Gradient Methods, and Proximal Policy Optimization (PPO), the study aims to improve the performance of robotic arms in grasping objects with varying shapes, sizes, and environmental conditions. The paper provides a detailed analysis of the various deep reinforcement learning methods used for grasping strategy optimization, emphasizing the strengths and weaknesses of each algorithm. It also presents a comprehensive framework for training the DRL models, including simulation environment setup, the optimization process, and the evaluation metrics for grasping success. The results demonstrate that the proposed approach significantly enhances the accuracy and stability of the robotic arm in performing grasping tasks. The study further explores the challenges in training deep reinforcement learning models for real-time robotic applications and offers solutions for improving the efficiency and reliability of grasping strategies.

Keywords: Robotic Arm; Grasping Strategy; Deep Reinforcement Learning; Q-Learning; DQN; Policy Gradient; PPO; Optimization; Simulation; Robotics

References:

[1] Hiba S, Smail T, Rachid S, et al. Vision-Based Robotic Arm Control Algorithm Using Deep Reinforcement Learning for Autonomous Objects Grasping[J].Applied Sciences,2021,11(17):7917-7917.

[2] Shu Y, Xiong C, Chen C. A Study on Robotic Arm Target Recognition and Grasping Method Based on Deep Learning[J].International Journal of Pattern Recognition and Artificial Intelligence,2024,38(05):

[3] Hui G, Qi H, Zhe W. Optimization of Robotic Arm Grasping through Fractional-Order Deep Deterministic Policy Gradient Algorithm[J].Journal of Physics: Conference Series,2023,2637(1):

[4] Hui G, Qi H, Zhe W. Optimization of Robotic Arm Grasping through Fractional-Order Deep Deterministic Policy Gradient Algorithm[J].Journal of Physics: Conference Series,2023,2637(1):

[5] Li H, Zhu J. Research on Robotic Arm Grasping Algorithm Based on an Enhanced Edge Network[J].Frontiers in Computing and Intelligent Systems,2024,10(3):65-70.

[6] Zhou J, Zuo G, Li X, et al. Motion control strategy for robotic arm using deep cascaded feature-enhancement Bayesian broad learning system with motion constraints.[J].ISA transactions,2025,160268-278.

[7] Zhizhuo Z, Change Z. Simulation of Robotic Arm Grasping Control Based on Proximal Policy Optimization Algorithm[J].Journal of Physics: Conference Series,2022,2203(1):

[8] Hiba S, Smail T, Rachid S, et al. Vision-Based Robotic Arm Control Algorithm Using Deep Reinforcement Learning for Autonomous Objects Grasping[J].Applied Sciences,2021,11(17):7917-7917.

Privacy Policy | Copyright © 2011-2025 Ivy Publisher. All Rights Reserved.

Contact: customer@ivypub.org