您所在的位置: 首页 >> 期刊 >> 生物工程前沿

生物工程前沿

《生物工程前沿》是IVY出版社旗下的一本关注生物工程技术发展的综合性国际期刊,主要刊登生物技术工程、微生物、医药、农林、食用菌、轻工食品、环保、食用菌及相关生物学领域内最新研究进展的学术性论文、评论性文章和研究综述性文章,旨在为该领域内的专家、学者、科研人员、管理人员提供一个良好的传播、分享和探讨学科研究进展的交流平台,反映学术前沿水平,促进学术交流,促进生物技术的发展。本刊可接收中、英文稿件。其中,中文稿件要有详细的英文标题、作者、单位…… 【更多】 《生物工程前沿》是IVY出版社旗下的一本关注生物工程技术发展的综合性国际期刊,主要刊登生物技术工程、微生物、医药、农林、食用菌、轻工食品、环保、食用菌及相关生物学领域内最新研究进展的学术性论文、评论性文章和研究综述性文章,旨在为该领域内的专家、学者、科研人员、管理人员提供一个良好的传播、分享和探讨学科研究进展的交流平台,反映学术前沿水平,促进学术交流,促进生物技术的发展。

本刊可接收中、英文稿件。其中,中文稿件要有详细的英文标题、作者、单位、摘要和关键词。初次投稿请作者按照稿件模板排版后在线投稿。稿件会经过严格、公正的同行评审步骤,录用的稿件首先发表在本刊的电子刊物上,然后高质量印刷发行。期刊面向全球公开征稿、发行,要求来稿均不涉密,文责自负。

ISSN Print:2327-0837

ISSN Online:2327-0888

Email:bf@ivypub.org

Website: http://www.ivypub.org/bf/

  0
  0

Paper Infomation

Cloning And Characterization Of A Geranylgeranyl Diphosphate Synthase Gene From Taxus Chinensis

Full Text(PDF, 7870KB)

Author: Junhao Shen, Yangyang Qiao, Yongqin Chen, Jungui Dai, Qiqi Chen, Zhifan Yang, Xuzhi Ruan, Ronghua Wei

Abstract: Taxol (Paclitaxel) is a diterpene from Taxus species and has been used in treatment of various kinds of cancers. Geranylgeranyl diphosphate synthase (GGPPS) catalyzes the formation of geranylgeranyl diphosphate (GGPP, the common precursor for diterpenes and plays a key role in taxol biosynthesis. Here we report a functional GGPPS gene from Taxus chinensis (designated TcGGPPS). TcGGPPS is an intron free gene and has a 1,182-bp open reading frame encoding a polypeptide of 393 amino acid residues with a calculated molecular mass of 42.63 kDa and an isoelectric point of 5.58. The catalytic activity of TcGGPPS for production of GGPP was verified by a color enhancement assay in the Escherichia coli cells harboring plasmid pAC-BETA. Multiple sequence alignment indicates that TcGGPPS is a little different in sequence from the functional GGPPS genes from other Taxus species such as T. canadensis, T. media and T. wallichiana, which are almost identical to each other. Protein structure prediction by using bioinformatics reveals that TcGGPPS consists of 52.2% α-helix, 10.9% extended strand, 8.4% β-turn and 28.5% random coil, and has a three-dimensional structure highly similar to the structurally known Sinapis alba GGPPS. In silicon predictions also demonstrate that TcGGPPS has a plastid-targeting peptide at the N-terminus, suggesting it is responsible for the synthesis of GGPP in plastids.

Keywords: Taxus chinensis; Geranylgeranyl Diphosphate Synthase; Gene Cloning; Taxol Biosynthesis

References:

[1]Fauzee NJS, Dong Z, Wang Y.Taxanes: promising anti-cancer drugs. Asian Pac J Cancer Prev, 2011, 12: 837–851

[2]Wani MC, Taylor HL, Wall ME et al. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc, 1971, 93: 2325–2327

[3]Kingston DGI. Taxol and its analog. In: Anticancer Agents From Natural Products (2nd Edition) edited by Cragg GM, Kingston DGI and Newman DJ. pp123–176. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, 2011

[4]Hoke SH, Wood JM, Cooks RG., Li XH, Chang CJ. Rapid screening for taxanes by tandem mass-spectrometry. Anal Chem, 1992, 64: 2313–2315

[5]van Rozendaal ELM, Lelyveld GP, van Beek TA.Screening of the needles of different yew species and cultivars for paclitaxel and related taxoids. Phytochemistry, 2000, 53:383–389

[6]Onrubia M, Cusidó RM, Ramirez K, Hernández-Vázquez L, Moyano E, Bonfill M, Palazon J. Bioprocessing of plant in vitro systems for the mass production of pharmaceutically important metabolites: paclitaxel and its derivatives. Curr Med Chem, 2013, 20: 880–891

[7]Howat S, Park B, Oh IS, Jin Y-W, Lee E-K, Loake GJ (2014) Paclitaxel: biosynthesis, production and future prospects. New Biotech 31: 242–245

[8]Cusidó RM, Onrubia M, Sabater-Jara AB, Moyano E, Bonfill M, Goossens A, Angeles Pedreño M, Palazon J (2014) A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. Biotechnol Adv 32: 1157–1167

[9]Croteau R, Ketchum REB, Long RM, RüKaspera R, Wildung MR. Taxol biosynthesis and molecular genetics. Phytochem Rev, 2006, 5: 75–97

[10]Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M. Production of the anticancer drug taxol in Taxus baccata suspension cultures: A review. Process Biochem, 2001, 46: 23–34

[11]Guerra-Bubb J, Croteau R, Williams RM. The early stages of taxol biosynthesis: an interim report on the synthesis and identification of early pathway metabolites. Nat Prod Rep, 2012, 29: 683–696

[12]Scolnik PA, Bartley GE. Nucleotide sequence of an Arabidopsis cDNA for geranylgeranyl pyrophosphate synthase. Plant Physiol, 1994, 104:1469–1470

[13]Hefner J, Ketchum RE, Croteau R. Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for taxol production. Arch Biochem Biophys, 1998, 360: 62–74

[14]Laskaris G, van der Heijden R, Verpoorte R. Purification and partial characterisation of geranylgeranyl diphosphate synthase from Taxus baccata cell cultures: An enzyme that regulates taxane biosynthesis. Plant Sci, 2000, 153: 97–105

[15]Laskaris G, Bounkhay M, Theodoridis G, van der Heijden R, Verpoorte R, Jaziri M. Induction of geranylgeranyl diphosphate synthase activity and taxane accumulation in Taxus baccata cell cultures after elicitation by methyl jasmonate. Plant Sci, 1999, 147:1–8

[16]Laskaris G, Jong CFD, Jaziri M, van der Heijden R, Theodoridis G, Verpoorte R. Geranylgeranyl diphosphate synthase activity and taxane production in Taxus baccata cells. Phytochemistry, 1999, 50: 939–946

[17]Liao Z, Gong Y, Kai G, Zuo K, Chen M, Tan Q, Wei Y, Guo L, Tan F, Sun X, Tang K. An intron-free methyl jasmonate inducible geranylgeranyl diphosphate synthase gene from Taxus media and its functional identification in yeast. Mol Biol, 2005, 39:11–17

[18] Lan XZ, Sun M. Cloning and characterization of the geranylgeranyl diphosphate synthase gene in Taxus walliciana. J Southwest Agric Univ, 2007, 28: 537–543

[19]Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol, 2000, 300: 1005–1016

[20]Emanuelsson O, Nielsen H, von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci, 1999, 8: 978–984

[21]Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S. Extensive feature detection of N-terminal protein sorting signals. Bioinformatics, 2002, 18: 298–305

[22]Combet C, Blanchet C, Geourjon C. Deléage G. NPS@: Network Protein Sequence Analysis. Trends Biochem Sci, 2000, 25:147–150

[23]Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modeling. Bioinformatics, 2006, 22:195–201

[24]Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: an automated protein homology-modeling server. Nucl Acids Res, 2003, 31: 3381–3385

[25]Joly A, Edwards PA. Effect of site-directed mutagenesis of conserved aspartate and arginine residues upon farnesyl diphosphate synthase activity. J Biol Chem, 1993, 268: 26983–26989

[26]Song L, Poulter CD. Yeast farnesyl-diphosphate synthase: site-directed mutagenesis of residues in highly conserved prenyltransferase domains I and II. Proc Natl Acad Sci USA, 1994, 91:3044–3048

[27]Hemmi H, Noike M, Nakayama T, Nishino T. An alternative mechanism of product chain-length determination in type Ⅲ geranylgeranyl diphosphate synthase. Eur J Biochem, 2003, 270:2,186–2,194

[28]Ogura K, Koyama T. Enzymatic aspects of isoprenoid chain elongation. Chem Rev, 1998, 98: 1263–1276

[29]Wang KC, Ohnuma S. Isoprenyl diphosphate synthases. Biochim Biophys Acta, 2000, 1529: 33–48

[30]Vandermoten S, Haubruge E, Cusson M. New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci, 2009, 66: 3685–3695

[31]Kloer DP, Welsch R, Beyer P, Schulz GE. Structure and reaction geometry of geranylgeranyl diphosphate synthase from Sinapis alba. Biochemistry, 2006, 45: 15197–15204

[32]Cunningham FX, Pogson B, Sun Z, McDonald KA, DellaPenna D, Gantt E. Functional analysis of β and ε lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell, 1996, 8:1613–1626

[33]Cao X, Zong Z, Ju X, Sun Y, Dai C, Liu Q, Jiang J. Molecular cloning, characterization and function analysis of the gene encoding HMG-CoA reductase from Euphorbia pekinensis Rupr. Mol Biol Rep, 2010, 37:1559–1567

[34]Akhtar N, Gupta P, Sangwan NS, Sangwan RS, Trivedi PR. Cloning and functional characterization of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Withania somnifera: an important medicinal plant. Protoplasma, 2013, 250: 613–622

[35]Wildung MR, Croteau R. A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of Taxol biosynthesis. J Biol Chem, 1996, 271: 9201–9204

[36]Beck G, Coman D, Herren E, Herren E, Ruiz-Sola MA, Rodríguez-Concepción M, Gruissem W, Vranová E. Characterization of the GGPP synthase gene family in Arabidopsis thaliana. Plant Mol Biol, 2013, 82:393–416

[37]Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol, 2013, 64: 665–700

[38]Coman D, Altenhoff A, Zoller S, Gruissem W, Vranová E (2014). Distinct evolutionary strategies in the GGPPS family from plants. Front Plant Sci 5: 230

Privacy Policy | Copyright © 2011-2024 Ivy Publisher. All Rights Reserved.

Contact: customer@ivypub.org