您所在的位置: 首页 >> 期刊 >> 生物工程前沿

生物工程前沿

《生物工程前沿》是IVY出版社旗下的一本关注生物工程技术发展的综合性国际期刊,主要刊登生物技术工程、微生物、医药、农林、食用菌、轻工食品、环保、食用菌及相关生物学领域内最新研究进展的学术性论文、评论性文章和研究综述性文章,旨在为该领域内的专家、学者、科研人员、管理人员提供一个良好的传播、分享和探讨学科研究进展的交流平台,反映学术前沿水平,促进学术交流,促进生物技术的发展。本刊可接收中、英文稿件。其中,中文稿件要有详细的英文标题、作者、单位…… 【更多】 《生物工程前沿》是IVY出版社旗下的一本关注生物工程技术发展的综合性国际期刊,主要刊登生物技术工程、微生物、医药、农林、食用菌、轻工食品、环保、食用菌及相关生物学领域内最新研究进展的学术性论文、评论性文章和研究综述性文章,旨在为该领域内的专家、学者、科研人员、管理人员提供一个良好的传播、分享和探讨学科研究进展的交流平台,反映学术前沿水平,促进学术交流,促进生物技术的发展。

本刊可接收中、英文稿件。其中,中文稿件要有详细的英文标题、作者、单位、摘要和关键词。初次投稿请作者按照稿件模板排版后在线投稿。稿件会经过严格、公正的同行评审步骤,录用的稿件首先发表在本刊的电子刊物上,然后高质量印刷发行。期刊面向全球公开征稿、发行,要求来稿均不涉密,文责自负。

ISSN Print:2327-0837

ISSN Online:2327-0888

Email:bf@ivypub.org

Website: http://www.ivypub.org/bf/

  0
  0

Paper Infomation

Artificial Intelligence in Medical Image‑Aided Diagnosis: An Overview

Full Text(PDF, 413KB)

Author: Beibei Hu, Liang Zhou, Qiong Ni

Abstract: This paper provides a comprehensive review of artificial intelligence (AI) applications in medical imaging diagnosis and assesses its clinical translation challenges. Through systematic review and meta-analysis, we evaluated AI diagnostic performance across imaging modalities including ophthalmology, respiratory medicine, and breast imaging. Results show that AI models consistently achieve high sensitivity and specificity, with AUC values above 0.9. However, real-world implementation remains limited due to methodological weaknesses, bias issues, and lack of external validation. The study emphasizes the need for a shift from accuracy-focused development to trustworthy, fair, and sustainable AI systems. We propose a novel framework for integrating AI into clinical practice through transparent reporting, human-AI collaboration, and rigorous validation, offering practical guidance for future AI deployment in healthcare.

Keywords: Medical Imaging, Clinical Translation, Trustworthy AI, Diagnosis

References:

[1] Obuchowicz, R., Lasek, J., Wodziński, M. et al. “Artificial Intelligence-Empowered Radiology-Current Status and Critical Review.” Diagnostics (Basel) 15 (2025): 282. doi:10.3390/diagnostics15030282

[2] Andreas Rowald, Salif Komi, Robin Demesmaeker. et al. (2022). Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nature Medicine. https://doi.org/10.1038/s41591-021-01423-5

[3] Al-Obeidat, Feras, Wael Hafez, Asrar Rashid. et al. “Artificial Intelligence for the Detection of Acute Myeloid Leukemia from Microscopic Blood Images: A Systematic Review and Meta-Analysis.” Frontiers in Big Data 7 (2024): 1402926. doi:10.3389/fdata.2024.1402926.

[4] Xipeng Pan, Jijun Cheng, Feihu Hou. et al. (2023). “SMILE: Cost-sensitive Multi-task Learning for Nuclear Segmentation and Classification with Imbalanced Annotations.” Medical Image Analysis 88 (2023): 102867. https://doi.org/10.1016/j.media.2023.102867.

[5] Yunfang Yu, Wei Ren, Luhui Mao. et al.(2025). MRI-based multimodal AI model enables prediction of recurrence risk and adjuvant therapy in breast cancer. https://doi.org/10.1016/j.phrs.2025.107765

[6] Han, X., Yan, Q., Gao, N. et al. (2025) “Biocompatible Lyotropic Nanocarriers for Improved Delivery of Ascorbyl Tetraisopalmitate in Skincare.” Langmuir 41

[7] Chen, F., Wang, L., Hong, J. et al. “Unmasking Bias in Artificial Intelligence: A Systematic Review of Bias Detection and Mitigation Strategies in Electronic Health Record-Based Models.” Journal of the American Medical Informatics Association 31 (2024): 1172-83. doi:10.1093/jamia/ocae060.

[8] Zhang, H., Jian, M., Shao, M. et al.“Cross Spatio-Temporal Pathology-based Lung Nodule Dataset.” Scientific Data 11 (2024): 1007. Accessed. doi:10.1038/s41597-024-03851-7

[9] Shahid, G. S., Ahmad, J., Warraich, C. A. et al. “LIU-NET: Lightweight Inception U-Net for Efficient Brain Tumor Segmentation from Multimodal 3D MRI Images.” PeerJ Computer Science 11 (2025): e2787. doi:10.7717/peerj-cs.2787.

[10] Wang, Z., Lan, Y., Xu, Z.. et al. “Scientific Data Sharing and Reuse: Comparison of Mortality Predictive Models of Sepsis Patients Based on Machine Learning.” Chinese Medical Sciences Journal 37, no. 3 (2022): 201–10. https://doi.org/10.24920/004102.

[11] Chang, Y.-W., Ryu, J. K., An, J. K. et al. “Artificial Intelligence for Breast Cancer Screening in Mammography (AI-STREAM): Preliminary Analysis of a Prospective Multicenter Cohort Study.” Nature Communications (2025). https://doi.org/10.1038/s41467-025-57469-3.

[12] Hall, Jeff. “FDA Clears AI Software for Assessing Intracerebral Hemorrhage on Non-Contrast CT.” Diagnostic Imaging, February 12, 2024. https://www.diagnosticimaging.com/view/fda-ai-software-intracerebral-hemorrhage-non-contrast-ct.

[13] Katharina Wenderott, Jim Krups, Matthias Weigl. et al. (2024). Effects of artificial intelligence implementation on efficiency in medical imaging—a systematic literature review and meta-analysis. npj Digital Medicine. https://doi.org/10.1038/s41746-024-01248-9

[14] Besler, M. S., Koç, U. “Systematic Review of Artificial Intelligence Competitions in Radiology: A Focus on Design, Evaluation, and Trends.” Diagn Interv Radiol (2025). https://doi.org/10.4274/dir.2025.243152.

[15] Gupte, T., Nitave, T., Gobburu, J. et al. “Regulatory Landscape of Accelerated Approval Pathways for Medical Devices in the United States and the European Union.” Frontiers in Medical Technology 7 (2025): 1586070. https://doi.org/10.3389/fmedt.2025.1586070.

[16] Wenderott, K., Krups, J., Weigl, M. et al. “Facilitators and Barriers to Implementing AI in Routine Medical Imaging: Systematic Review and Qualitative Analysis.” Journal of Medical Internet Research 27 (2025): e63649. https://doi.org/10.2196/63649.

[17] Soleimantabar, H., Mahdavi, A., Qorbani, M. et al. “Artificial Intelligence in Radiology: Perceptions, Adoption Barriers, and Trust Among Iranian Radiologists in a Global Context.” InfoScience Trends 2 (2025): 1–12. https://doi.org/10.61186/ist.202502.03.01.

Privacy Policy | Copyright © 2011-2025 Ivy Publisher. All Rights Reserved.

Contact: customer@ivypub.org