您所在的位置: 首页 >> 期刊 >> 生物工程前沿

生物工程前沿

《生物工程前沿》是IVY出版社旗下的一本关注生物工程技术发展的综合性国际期刊,主要刊登生物技术工程、微生物、医药、农林、食用菌、轻工食品、环保、食用菌及相关生物学领域内最新研究进展的学术性论文、评论性文章和研究综述性文章,旨在为该领域内的专家、学者、科研人员、管理人员提供一个良好的传播、分享和探讨学科研究进展的交流平台,反映学术前沿水平,促进学术交流,促进生物技术的发展。本刊可接收中、英文稿件。其中,中文稿件要有详细的英文标题、作者、单位…… 【更多】 《生物工程前沿》是IVY出版社旗下的一本关注生物工程技术发展的综合性国际期刊,主要刊登生物技术工程、微生物、医药、农林、食用菌、轻工食品、环保、食用菌及相关生物学领域内最新研究进展的学术性论文、评论性文章和研究综述性文章,旨在为该领域内的专家、学者、科研人员、管理人员提供一个良好的传播、分享和探讨学科研究进展的交流平台,反映学术前沿水平,促进学术交流,促进生物技术的发展。

本刊可接收中、英文稿件。其中,中文稿件要有详细的英文标题、作者、单位、摘要和关键词。初次投稿请作者按照稿件模板排版后在线投稿。稿件会经过严格、公正的同行评审步骤,录用的稿件首先发表在本刊的电子刊物上,然后高质量印刷发行。期刊面向全球公开征稿、发行,要求来稿均不涉密,文责自负。

ISSN Print:2327-0837

ISSN Online:2327-0888

Email:bf@ivypub.org

Website: http://www.ivypub.org/bf/

  0
  0

Paper Infomation

Research on the Application of Generative AI in Nursing Documentation

Full Text(PDF, 406KB)

Author: Xiaofen Wang, Qiong Ni, Shenhui Wu

Abstract: In nursing practice, electronic nursing records (ENRs) are an important component of patient care documents, but they also significantly increase administrative burdens. With the development of artificial intelligence technology, it has become possible to use large text models to assist in generating nursing documents. This article explores the application of generative AI in nursing documentation. Research has shown that the application of generative AI in nursing documents demonstrates significant potential, but also faces challenges in terms of quality and implementation. In terms of efficiency, AI assisted document tools can significantly reduce the administrative burden on nurses by reallocating time to direct patient care. Studies have shown that they can reduce document time by 21-30%. However, there are variables in the quality of AI generated records, and the content is often described as 'textbook style', lacking patient specific details and appropriate medical terminology. Successful implementation relies on a specialized framework that includes strong stakeholder engagement and adaptation to nursing specific workflows and regulatory standards. The conclusion points out that current AI systems are most suitable for assisting in drafting nursing documents, and clinical validation remains crucial for patient safety and document integrity.

Keywords: Artificial Intelligence; Electronic Nursing Records; Nursing Documentation; Framework

References:

[1] Bhuyan SS, Sateesh V, Mukul N. et al. Generative Artificial Intelligence Use in Healthcare: Opportunities for Clinical Excellence and Administrative Efficiency. J Med Syst. 2025 Jan 16;49(1):10. doi: 10.1007/s10916-024-02136-1.

[2] Ju H, Park M, Jeong H. et al. Generative AI-Based Nursing Diagnosis and Documentation Recommendation Using Virtual Patient Electronic Nursing Record Data. Healthc Inform Res. 2025 Apr;31(2):156-165. https://doi.org/10.4258/hir.2025.31.2.156.

[3] Bracken, A., Reilly, C., Feeley, A. et al. (2025). Artificial Intelligence (AI) – Powered Documentation Systems in Healthcare: A Systematic Review. Journal of Medical Systems, 49: 28. https://doi.org/10.1007/s10916-025-02157-4.

[4] Tischendorf, T., Hinsche, L., Hasseler, M. et al. (2025). GenAI in nursing and clinical practice: a rapid review of applications and challenges. Journal of Public Health. https://doi.org/10.1007/s10389-025-02523-z.

[5] Takayama, T., Sado, K., Suda, K. et al. (2025). Evaluating an LLM-Assisted Workflow for Clinical Documentation: A Pilot Randomized Controlled Trial on Time and Quality. medRxiv. https://doi.org/10.1101/2025.10.06.25337211.

[6] Chen, Y., Esmaeilzadeh, P. (2024). Generative AI in Medical Practice: In-Depth Exploration of Privacy and Security Challenges. Journal of Medical Internet Research, 26, e53008. https://doi.org/10.2196/53008.

[7] Ibrahim, A. M., Zorumba, M. A., Abousoliman, A. D. et al. (2025). Ethical implications of artificial intelligence integration in nursing practice in Arab countries: literature review. BMC Nursing 24: 159. https://doi.org/10.1186/s12912-025-02798-3.

[8] UW Health. IMC training proves rewarding for new and experienced RNs [Article on a listing page]. UW Health Careers. https://careers.uwhealth.org/category/nursing/page/2/.

[9] Shepherd, J., McCarthy, A. (2025). Advancing Nursing Practice Through Artificial Intelligence: Unlocking Its Transformative Impact. The Online Journal of Issues in Nursing, 30(2). https://doi.org/10.3912/OJINVo130No02Man01.

[10] AI Horizons Institute. (2025). AI In Healthcare Workgroup. White Paper. Retrieved from https://www.rochester.edu/warner/lida/wp-content/uploads/2025/02/AI-Horizons-Healthcare-White-Paper.pdf.

[11] Leung, T. I., Coristine, A. J., Benis, A. (2025). AI Scribes in Health Care: Balancing Transformative Potential With Responsible Integration. JMIR Medical Informatics, 13. https://doi.org/10.2196/80898.

[12] Perkins SW, Muste JC, Alam T, et al. Improving Clinical Documentation with Artificial Intelligence: A Systematic Review. Adv Health Inf Pract. 2024;21(2):1d. Published October 31, 2024.

[13] Vanderlaan, J., Nicholas, L., Leland, N. (2025). Practical intelligence: Generative AI Toolkit for Nurse Education. UNIV University Libraries. https://oasis.library.unlv.edu/nursing_fac/424.

[14] Hassanein, S., El Arab, R. A., Abdrbo, A. et al. (2025). Artificial intelligence in nursing: an integrative review of clinical and operational impacts. Frontiers in Digital Health. https://doi.org/10.3389/fdgth.2025.1552372.

[15] Nair, M., Nygren, J., Nilsen, P. et al. (2025). Critical activities for successful implementation and adoption of AI in healthcare: towards a process framework for healthcare organizations. Frontiers in Digital Health, 7, Article 1550459. https://doi.org/10.3389/fdgth.2025.1550459.

[16] Wells, B. J., Nguyen, H. M., McWilliams, A. et al. (2025). A practical framework for appropriate implementation and review of artificial intelligence (FAlR-Al) in healthcare. npj Digital Medicine, 8, Article 1900. https://doi.org/10.1038/s41746-025-01900-y.

[17] Ramadan OME, Alruwaili MM, Alruwaili AN. et al. Facilitators and barriers to AI adoption in nursing practice: a qualitative study of registered nurses' perspectives. BMC Nurs. 2024 Dec 18;23(1):891. doi: 10.1186/s12912-024-02571-y.

[18] Hassan M, Kushniruk A, Borycki E. Barriers to and Facilitators of Artificial Intelligence Adoption in Health Care: Scoping Review. JMIR Hum Factors. 2024 Aug 29;11:e48633. doi: 10.2196/48633. PMID: 39207831; PMCID: PMC11393514.

[19] Nilsen P, Svedberg P, Neher M. et al. A Framework to Guide Implementation of AI in Health Care: Protocol for a Cocreation Research Project. JMIR Res Protoc. 2023 Nov 8;12:e50216. doi: 10.2196/50216.

[20] Clark, S. E., Mathur, S., Barrado-Martín, Y. et al. (2025). An umbrella review of the facilitators and barriers to implementing Artificial Intelligence (AI) solutions within hospital settings: through the lens of the NASSS framework (spread, scale-up and sustainability). medRxiv. https://doi.org/10.1101/2025.06.19.25329916.

Privacy Policy | Copyright © 2011-2025 Ivy Publisher. All Rights Reserved.

Contact: customer@ivypub.org