您所在的位置: 首页 >> 期刊 >> 控制工程期刊

控制工程期刊

《控制工程期刊》是一本关注控制工程领域最新进展的开源国际学术期刊。本刊采用开放获取模式,报道控制工程学科领域的最新科研成果,旨在反映学术前沿进展及水平,促进学术交流,为国内外该领域的学者、科研人员提供一个良好的交流平台,以推进控制工程理论、应用和技术的发展。本刊可接收中、英文稿件。但中文稿件要有详细的英文标题、作者、单位、摘要和关键词。初次投稿请按照稿件模板排版后在线投稿。录用稿件首先刊发在期刊网站上,然后由Ivy Publisher出版公司高质量…… 【更多】 《控制工程期刊》是一本关注控制工程领域最新进展的开源国际学术期刊。本刊采用开放获取模式,报道控制工程学科领域的最新科研成果,旨在反映学术前沿进展及水平,促进学术交流,为国内外该领域的学者、科研人员提供一个良好的交流平台,以推进控制工程理论、应用和技术的发展。

本刊可接收中、英文稿件。但中文稿件要有详细的英文标题、作者、单位、摘要和关键词。初次投稿请按照稿件模板排版后在线投稿。录用稿件首先刊发在期刊网站上,然后由Ivy Publisher出版公司高质量出版,面向全球公开发行。因此,要求来稿均不涉密,文责自负。

ISSN Print:2167-0196

ISSN Online:2167-020X

Email:sjce@ivypub.org

Website: http://www.ivypub.org/sjce

  0
  0

Paper Infomation

Fatigue Damage Mechanisms and Life Prediction of Metallic Materials

Full Text(PDF, 62KB)

Author: Jiao Luo

Abstract: Fatigue is a critical degradation mechanism that governs the structural integrity and service life of metallic materials across diverse engineering applications. This study provides a comprehensive review of fatigue damage mechanisms and life prediction methodologies at multiple scales—from microstructural dislocation activity to macroscopic structural response. It explores empirical fatigue life models, fracture mechanics-based crack growth laws, continuum damage mechanics, and probabilistic reliability approaches. Multiscale fatigue behavior is discussed in the context of grain-level deformation, crack nucleation, and component-level failure. The paper also emphasizes experimental and characterization techniques such as in-situ fatigue testing, electron microscopy, nondestructive evaluation, and digital image correlation, all of which play pivotal roles in advancing fatigue analysis. By integrating physical insights with computational and statistical modeling, this review highlights the current state-of-the-art and identifies key challenges and opportunities in the pursuit of accurate, scalable, and robust fatigue life prediction frameworks.

Keywords: Fatigue Damage; Life Prediction; Fracture Mechanics; Continuum Damage Mechanics; Multiscale Modeling; Nondestructive Evaluation

References:

[1] Michal B, Jakub H. Isothermal low-cycle fatigue, fatigue–creep and thermo-mechanical fatigue of SiMo 4.06 cast iron: Damage mechanisms and life prediction[J]. Engineering Fracture Mechanics,2023,288

[2] Yang J, Zheng Y, Wang F, et al. Isothermal and thermomechanical fatigue of 316H stainless steel: Damage mechanism and life prediction[J]. International Journal of Fatigue,2025,194108863-108863.

[3] Liu M, Cai Y, Wang Q, et al. The low cycle fatigue property, damage mechanism, and life prediction of additively manufactured Inconel 625: Influence of temperature[J]. Fatigue & Fracture of Engineering Materials & Structures,2023,46(10):3829-3845.

[4] Zou C, Tan B, Zhang Y, et al. Thermo-mechanical fatigue damage mechanism and life prediction of compacted graphite iron with high strength[J]. International Journal of Fatigue,2025,197108931-108931.

[5] Zhang B, Badar J, Chen W, et al. Failure analysis of the suspender fracture in a railway self-anchored suspension bridge: Damage identification, fatigue mechanism and remaining life prediction[J]. Engineering Structures,2024,311118160-.

[6] Wu Q, Tan B, Pang J, et al. Low-Cycle Fatigue Damage Mechanism and Life Prediction of High-Strength Compacted Graphite Cast Iron at Different Temperatures[J]. Materials,2024,17(17):4266-4266.

[7] Bartošák M, Mára V, Šulák I. Effects of temperature and strain rate on isothermal low-cycle fatigue behaviour of Inconel 718 superalloy: Damage mechanisms, microstructure evolution, and life prediction[J]. International Journal of Fatigue,2025,198109005-109005.

[8] Cui H, Han Q. Fatigue Damage Mechanism and Fatigue Life Prediction of Metallic Materials[J]. Metals,2023,13(10):

Privacy Policy | Copyright © 2011-2025 Ivy Publisher. All Rights Reserved.

Contact: customer@ivypub.org