您所在的位置: 首页 >> 期刊 >> 化学发展前沿

化学发展前沿

《化学发展前沿》期刊是一本关注化学领域最新进展的开源国际学术期刊。本刊采用开放获取模式,报道化学及工程技术领域的最新科研成果和学术动态,旨在反映学术前沿进展及水平,促进学术交流,为国内外化学及相关领域的学者、科研人员、管理人员提供一个良好的交流平台,以推进化学化工领域理论和技术的发展。本刊可接收中、英文稿件。但中文稿件要有详细的英文标题、作者、单位、摘要和关键词。初次投稿请按照稿件模板排版后在线投稿。录用的稿件首先刊发在期刊网站上,然…… 【更多】 《化学发展前沿》期刊是一本关注化学领域最新进展的开源国际学术期刊。本刊采用开放获取模式,报道化学及工程技术领域的最新科研成果和学术动态,旨在反映学术前沿进展及水平,促进学术交流,为国内外化学及相关领域的学者、科研人员、管理人员提供一个良好的交流平台,以推进化学化工领域理论和技术的发展。

本刊可接收中、英文稿件。但中文稿件要有详细的英文标题、作者、单位、摘要和关键词。初次投稿请按照稿件模板排版后在线投稿。录用的稿件首先刊发在期刊网站上,然后由Ivy Publisher出版公司高质量出版,面向全球公开发行。因此,要求来稿均不涉密,文责自负。

ISSN Print:2167-163X

ISSN Online:2167-1648

Email:sjfcd@ivypub.org

Website: http://www.ivypub.org/sjfcd

  0
  0

Paper Infomation

Decomposition and Diffusion of Methane Hydrate in Porous Medium Molecular Dynamics Simulation

Full Text(PDF, 6412KB)

Author: Longlong Li, Ping Guo

Abstract: This paper uses molecular dynamics simulation of methane hydrate decomposition and diffusion in porous media. This paper examines microscopic characteristics parameters of hydrate in porous media compared with pure hydrate, such as: density distribution, the radial distribution function(RDF), the diffusion coefficient and the mean square displacement(MSD) structural and dynamics properties of hydrate. We use NVT ensemble and NPT ensemble study decomposition and diffusion effects of methane hydrate in the silica surface. The purpose of this paper is to investigate the dissociation and diffusion mechanism of gas hydrates. Research showed that in the porous medium dissociation rate of hydrate is higher than the pure hydrate. So that under the specific pressure and temperature condition, the driving force of gas hydrate dissociation in porous media will be higher than that of pure methane hydrate.

Keywords: Methane Hydrate; Molecular Dynamics; Diffusion Coefficient; in Porous Media

References:

[1] S.Alireza Bagherzadeh. “Evolution of methane during gas hydrate dissociation,” Science Direct, Fluid Phase Equilibria, 358 ,114-120, 2013

[2] W. Hao, J. Wang, S. Fan, W. Hao. “Evaluation and analysis method for natural gas hydrate storage and transportation processes.” Energy Convers. Manag, 49, 2546-2553, 2008

[3] R. Kumar, P. Englezos, I. Moudrakovski, J.A. Ripmeester. “Structure and composition of CO2/H2 and CO2/H2/C3H8 hydrate in relation to simultaneous CO2 capture and H2 production.” AIChE J, 55,1584-1594, 2009

[4] P. Linga, R. Kumar, P. Englezos. “The clathrate hydrate process for post and precombustion capture of carbon dioxide.” J. Hazard. Mater,149, 625-629, 2007

[5] R.Kumar, P.Linga, J.Ripmeester, P. Englezos. “Two-stage clathrate hydrate/membrane process for precombustion capture of carbon dioxide and hydrogen.” J. Environ. Eng, 135,411-417, 2009

[6] Y. Iwai, H. Nakamura, Y. Arai, Y, “Shimoyama, Analysis of dissociation process for gas hydrates by molecular dynamics simulation.” Mol. Simul, 36, 246-253, 2010

[7] Rogers R E, Zhong Y. “Feasibility of storing natural gas in hydrates commercially. In: Monfort J P, eds. Proceedings of the Second International Conference on Natural Gas Hydrates.” Toulouse: Tapir Academic Press, 843-872, 1996

[8] Gudmundsson J S. Hydrates for deep ocean storage of CO2. In: Austvik T, eds. Proceedings of the Fifth International Conference on Gas Hydrates. Trondheim: Tapir Academic Press, 2005,50,1135-1144

[9] R.K. McMullan, G.A. Jeffrey. “Polyhedral Clathrate Hydrates. IX. Structure of ethylene oxide hydrate.” J. Chem. Phys,42, 2725-2732, 1965

[10] Berendsen H J C, Grigera J R, Straatsma T P. “The missing term in effective pair potentials.” J Phys Chem, 91, 6269-6271, 1987

[11] Tse JS,Klein ML,McDonald IR. “Molecular dynamics studies of ice Ic and the structure I clathrate hydrate of methane.” J.Phys.Chem,87,4198-4203, 1983

[12] Abascal JLF, Sanz E, Fernández RG, Vega C.A “potential model forthe study of ices and amorphous water: TIP4P/Ice.” J. Chem. Phys,122,234-511, 2005

[13] Lopes PE, Murashov V, Tazi M, Demchuk M,MacKerell Jr. AD. “Development of an Empirical Force Field for Silica. Application to the Quartz-Water Interface.” J. Phys. Chem. B, 110, 2782-2792, 2006

[14] Jorgensen W L, Madura J D, Swenson C J. “Optimized intermolecular potential functions for liquid hydrocarbons.” J Am Chem Soc, 106, 6638-6646, 1984

[15] Rodger, P. M. AIChE J. 37, 1511-1516, 1991

[16] Førrisdahl,O .K. ;Kwamme,B.; Haymet, A.D.J. Mol. Phys, 89, 819-834, 1996

[17] Hirai, S.; Okazaki, K.; Tabe, Y.; Kawamura, K. Energy ConVers. Manage, 38,S301-S306, 1997

[18] S. Plimpton. “Fast Parallel Algorithms for Short-Range Molecular Dynamics.” J Comp Phys,117, 1-19, 1995

Privacy Policy | Copyright © 2011-2024 Ivy Publisher. All Rights Reserved.

Contact: customer@ivypub.org