HomePage >> Journals >> Scientific Journal of Frontier Chemical Development

Scientific Journal of Frontier Chemical Development

ISSN Print:2167-163X

ISSN Online:2167-1648

Email:sjfcd@ivypub.org

Website: http://www.ivypub.org/sjfcd

  0
  0

Paper Infomation

Application of Metal Organic Frameworks in Carbon Dioxide Capture and Separation

Full Text(PDF, 2268KB)

Author: Hui Liu, Heping Zeng, Xiangfang Peng

Abstract: The environmental problem caused by excess carbon dioxide emissions has received great attention. The metal organic framework compounds as a new porous materials which self-assembled with inorganic vertices (metal ions or clusters) and organic struts can be used in carbon dioxide capture and separation due to their have advantage of the degree of orderliness, the high surface, diversity structures, tunable structures and modification porous. In this paper, the research progress of metal organic frameworks in application of carbon dioxide capture and separation in recent years are reviewed. Several methods for improving carbon dioxide capture and separation capability are systematically summarized. The methods mainly including design and synthesis MOFs with the high specific surface area, pore volume and suitable pore size, design and synthesis MOFs with the open unsaturated sites, design and synthesis flexible MOFs, design and synthesis MOFs modified with organic functional groups, post-synthesis modification of MOFs. The disadvantage of MOFs (including low effectively, high cost, low stability, harsh conditions and high energy consumption) in carbon dioxide capture and separation application also are pointed out. In addition, future developments of MOFs in photocatalytic or electrocatalytic reduction of carbon dioxide are prospected.

Keywords: Metal Organic Frameworks; Carbon Dioxide; Capture; Separation; Selectively Absorption

References:

[1] 鲁振达; 姚景; 林建国等, 由5-磺基水杨酸组装的镧系金属有机骨架配合物的合成及结构 [J]. 无机化学学报 2008, 24(8): 1335-1342.

[2] 陶兆林; 覃玲; 郑和根, 4,4′-二(苯并咪唑-1-甲基)联苯及樟脑酸构筑的二维镉配合物的合成、晶体结构及荧光性质 [J]. 无机化学学报 2012, 28(10): 2109-2113.

[3] Eddaoudi, M.; Moler, D. B.; Li, H. L., et al., Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks [J]. Acc. Chem. Res. 2001, 34(4): 319-330.

[4] Farha, O. K.; Hupp, J. T., Rational Design, Synthesis, Purification, and Activation of Metal-Organic Framework Materials [J]. Acc. Chem. Res. 2010, 43(8): 1166-1175.

[5] Zhang, X. T.; Fan, L. M.; Sun, Z., et al., Syntheses, Structures, and Properties of a Series of Multidimensional Metal-Organic Polymers Based on 3,3',5,5'-Biphenyltetracarboxylic Acid and N-Donor Ancillary Ligands [J]. Cryst. Growth Des. 2013, 13(2): 792-803.

[6] 付艳艳; 严秀平, 金属-有机骨架复合材料[J]. 化学进展(Progress in Chemistry) 2013, 25(Z1): 221-232.

[7] 贾超; 原鲜霞; 马紫峰, 金属有机骨架化合物(MOFs)作为储氢材料的研究进展 [J]. 化学进展(Progress in Chemistry) 2009, 21(9): 1954-1962.

[8] 穆翠枝; 徐峰; 雷威, 功能金属-有机骨架材料的应用 [J]. 化学进展(Progress in Chemistry) 2007, 19(09): 1345-1356.

[9] 魏文英; 方键; 孔海宁等, 金属有机骨架材料的合成及应用 [J]. 化学进展(Progress in Chemistry) 2005, 17(06): 164-169.

[10] Sumida, K.; Rogow, D. L.; Mason, J. A., et al., Carbon Dioxide Capture in Metal–Organic Frameworks [J]. Chem. Rev. (Washington, DC, U. S.) 2011, 112(2): 724-781.

[11] Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites [J]. Chem. Rev. (Washington, DC, U. S.) 2012, 112(2): 933-969.

[12] Yan, Q. J.; Lin, Y. C.; Wu, P. Y., et al., Designed Synthesis of Functionalized Two-Dimensional Metal-Organic Frameworks with Preferential CO2 Capture [J]. Chempluschem 2013, 78(1): 86-91.

[13] Xu, H.; He, Y. B.; Zhang, Z. J., et al., A microporous metal-organic framework with both open metal and Lewis basic pyridyl sites for highly selective C2H2/CH4 and C2H2/CO2 gas separation at room temperature [J]. J Mater Chem A 2013, 1(1): 77-81.

[14] Kim, J.; Furukawa, H.; Ko, N., et al., Ultrahigh Porosity in Metal-Organic Frameworks [J]. Science 2010, 329(5990): 424-428.

[15] Farha, O. K.; Yazaydin, A. O.; Eryazici, I., et al., De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities [J]. Nature Chem. 2010, 2(11): 944-948.

[16] Yaghi, O. M.; Millward, A. R., Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature [J]. J. Am. Chem. Soc. 2005, 127(51): 17998-17999.

[17] Yuan, D. Q.; Zhao, D.; Sun, D. F., et al., An Isoreticular Series of Metal-Organic Frameworks with Dendritic Hexacarboxylate Ligands and Exceptionally High Gas-Uptake Capacity [J]. Angew. Chem. Int. Ed. 2010, 49(31): 5357-5361.

[18] Du, L. T.; Lu, Z. Y.; Zheng, K. Y., et al., Fine-Tuning Pore Size by Shifting Coordination Sites of Ligands and Surface Polarization of Metal-Organic Frameworks To Sharply Enhance the Selectivity for CO2 [J]. J. Am. Chem. Soc. 2013, 135(2): 562-565.

[19] Liu, B.; Yang, Q.; Xue, C., et al., Enhanced adsorption selectivity of hydrogen/methane mixtures in metal-organic frameworks with interpenetration: A molecular simulation study [J]. J. Phys. Chem. C 2008, 112(26): 9854-9860.

[20] Cheon, Y. E.; Park, J.; Suh, M. P., Selective gas adsorption in a magnesium-based metal-organic framework [J]. Chem. Commun. (Cambridge, U. K.) 2009, (36): 5436-5438.

[21] Kim, J.; Yang, S. T.; Choi, S. B., et al., Control of catenation in CuTATB-n metal-organic frameworks by sonochemical synthesis and its effect on CO2 adsorption [J]. J. Mater. Chem. 2011, 21(9): 3070-3076.

[22] 刘蓓; 唐李兴; 廉源会等, 互穿结构及混合配体对金属-有机骨架材料分离性能的影响 [J]. 化学学报 2013, 71(6): 920-928.

[23] 刘宏文; 卢文贯, 一个由咪唑衍生物构筑的二重穿插的锌配位聚合物的合成、结构及荧光性质 [J]. 无机化学学报 2011, 27(11): 2205-2210.

[24] Prasad, T. K.; Suh, M. P., Control of Interpenetration and Gas-Sorption Properties of Metal-Organic Frameworks by a Simple Change in Ligand Design [J]. Chem-Eur J 2012, 18(28): 8673-8680.

[25] Ling, Y.; Deng, M. L.; Chen, Z. X., et al., Enhancing CO2 adsorption of a Zn-phosphonocarboxylate framework by pore space partitions [J]. Chem. Commun. (Cambridge, U. K.) 2013, 49(1): 78-80.

[26] Montoro, C.; Garcia, E.; Calero, S., et al., Functionalisation of MOF open metal sites with pendant amines for CO2 capture [J]. J. Mater. Chem. 2012, 22(20): 10155-10158.

[27] Banerjee, D.; Zhang, Z. J.; Plonka, A. M., et al., A Calcium Coordination Framework Having Permanent Porosity and High CO2/N2 Selectivity [J]. Cryst. Growth Des. 2012, 12(5): 2162-2165.

[28] Dietzel, P. D. C.; Johnsen, R. E.; Fjellvag, H., et al., Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal-organic framework Ni-2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction [J]. Chem. Commun. (Cambridge, U. K.) 2008, (41): 5125-5127.

[29] Cui, P.; Ma, Y. G.; Li, H. H., et al., Multipoint Interactions Enhanced CO2 Uptake: A Zeolite-like Zinc-Tetrazole Framework with 24-Nuclear Zinc Cages [J]. J. Am. Chem. Soc. 2012, 134(46): 18892-18895.

[30] Liao, P. Q.; Zhou, D. D.; Zhu, A. X., et al., Strong and Dynamic CO2 Sorption in a Flexible Porous Framework Possessing Guest Chelating Claws [J]. J. Am. Chem. Soc. 2012, 134(42): 17380-17383.

[31] Li, B.; Zhang, Z.; Li, Y., et al., Enhanced Binding Affinity, Remarkable Selectivity, and High Capacity of CO2 by Dual Functionalization of a rht-Type Metal-Organic Framework [J]. Angew. Chem. Int. Ed. 2012, 51(6): 1412-1415.

[32] 王三跃; 阳庆元; 仲崇立, 柔性金属-有机骨架材料中甲醇吸附和扩散的分子模拟[J]. 化学学报 2006, 64(17): 1775-1779.

[33] Zhou, J. L.; Wang, Y. Y.; Qin, L., et al., Syntheses, characterizations and properties of five new metal-organic complexes based on flexible ligand 4,4 '-(phenylazanediyl)dibenzoic acid [J]. CrystEngComm 2013, 15(3): 616-627.

[34] Choi, H. S.; Suh, M. P., Highly Selective CO2 Capture in Flexible 3D Coordination Polymer Networks [J]. Angew. Chem. Int. Ed. 2009, 48(37): 6865-6869.

[35] Hong, D. H.; Suh, M. P., Selective CO2 adsorption in a metal-organic framework constructed from an organic ligand with flexible joints [J]. Chem. Commun. (Cambridge, U. K.) 2012, 48(73): 9168-9170.

[36] Nakagawa, K.; Tanaka, D.; Horike, S., et al., Enhanced selectivity of CO2 from a ternary gas mixture in an interdigitated porous framework [J]. Chem. Commun. (Cambridge, U. K.) 2010, 46(24): 4258-4260.

[37] Tan, Y. X.; Wang, F.; Kang, Y., et al., Dynamic microporous indium(III)-4,4 '-oxybis(benzoate) framework with high selectivity for the adsorption of CO2 over N2[J]. Chem. Commun. (Cambridge, U. K.) 2011, 47(2): 770-772.

[38] Vaidhyanathan, R.; Iremonger, S. S.; Shimizu, G. K. H., et al., Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid [J]. Science 2010, 330(6004): 650-653.

[39] Couck, S.; Denayer, J. F. M.; Baron, G. V., et al., An Amine-Functionalized MIL-53 Metal-Organic Framework with Large Separation Power for CO2 and CH4 [J]. J. Am. Chem. Soc. 2009, 131(18): 6326-6327.

[40] Vaidhyanathan, R.; Iremonger, S. S.; Dawson, K. W., et al., An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures [J]. Chem. Commun. (Cambridge, U. K.) 2009, (35): 5230-5232.

[41] An, J.; Geib, S. J.; Rosi, N. L., High and Selective CO2 Uptake in a Cobalt Adeninate Metal-Organic Framework Exhibiting Pyrimidine- and Amino-Decorated Pores [J]. J. Am. Chem. Soc. 2010, 132(1): 38-39.

[42] Chen, Y. F.; Jiang, J. W., A Bio-Metal-Organic Framework for Highly Selective CO2 Capture: A Molecular Simulation Study [J]. Chemsuschem 2010, 3(8): 982-988.

[43] Yang, E.; Li, H. Y.; Wang, F., et al., Enhancing CO2 adsorption enthalpy and selectivity via amino functionalization of a tetrahedral framework material [J]. CrystEngComm 2013, 15(4): 658-661.

[44] Arstad, B.; Fjellvag, H.; Kongshaug, K. O., et al., Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide [J]. Adsorption-Journal of the International Adsorption Society 2008, 14(6): 755-762.

[45] Zheng, B. S.; Bai, J. F.; Duan, J. G., et al., Enhanced CO2 Binding Affinity of a High-Uptake rht-Type Metal-Organic Framework Decorated with Acylamide Groups [J]. J. Am. Chem. Soc. 2011, 133(4): 748-751.

[46] Duan, J. G.; Yang, Z.; Bai, J. F., et al., Highly selective CO2 capture of an agw-type metal-organic framework with inserted amides: experimental and theoretical studies [J]. Chem. Commun. (Cambridge, U. K.) 2012, 48(25): 3058-3060.

[47] Liu, H.; Zhao, Y.; Zhang, Z., et al., Ligand Functionalization and Its Effect on CO2 Adsorption in Microporous Metal–Organic Frameworks [J]. Chemistry – An Asian Journal 2013, 8(4): 778-785.

[48] Liu, H.; Zhao, Y. G.; Zhang, Z. J., et al., The Effect of Methyl Functionalization on Microporous Metal-Organic Frameworks' Capacity and Binding Energy for Carbon Dioxide Adsorption [J]. Adv. Funct. Mater. 2011, 21(24): 4754-4762.

[49] 张秀芳; 安晓辉; 刘大欢等, 离子交换对usf-ZMOF二氧化碳吸附能力影响的研究 [J]. 化学学报 2011, 69(1): 84-88.

[50] Park, H. J.; Suh, M. P., Enhanced isosteric heat, selectivity, and uptake capacity of CO2 adsorption in a metal-organic framework by impregnated metal ions [J]. Chemical Science 2013, 4(2): 685-690.

[51] Noro, S.; Hijikata, Y.; Inukai, M., et al., Highly Selective CO2 Adsorption Accompanied with Low-Energy Regeneration in a Two-Dimensional Cu(II) Porous Coordination Polymer with Inorganic Fluorinated PF6- Anions [J]. Inorg. Chem. 2013, 52(1): 280-285.

[52] Ma, H. P.; Ren, H.; Zou, X. Q., et al., Novel lithium-loaded porous aromatic framework for efficient CO2 and H2 uptake [J]. J Mater Chem A 2013, 1(3): 752-758.

[53] Zhao, Y. F.; Liu, X.; Yao, K. X., et al., Superior Capture of CO2 Achieved by Introducing Extra-framework Cations into N-doped Microporous Carbon [J]. Chem. Mater. 2012, 24(24): 4725-4734.

[54] Zhang, Z. J.; Gao, W. Y.; Wojtas, L., et al., Post-Synthetic Modification of Porphyrin-Encapsulating Metal-Organic Materials by Cooperative Addition of Inorganic Salts to Enhance CO2/CH4 Selectivity [J]. Angew. Chem. Int. Ed. 2012, 51(37): 9330-9334.

[55] Bae, Y. S.; Farha, O. K.; Hupp, J. T., et al., Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification [J]. J. Mater. Chem. 2009, 19(15): 2131-2134.

[56] Bae, Y. S.; Hauser, B. G.; Farha, O. K., et al., Enhancement of CO2/CH4 selectivity in metal-organic frameworks containing lithium cations [J]. Microporous Mesoporous Mater. 2011, 141(1-3): 231-235.

[57] Miralda, C. M.; Macias, E. E.; Zhu, M. Q., et al., Zeolitic Imidazole Framework-8 Catalysts in the Conversion of CO2 to Chloropropene Carbonate [J]. Acs Catal 2012, 2(1): 180-183.

[58] Kumar, R. S.; Kumar, S. S.; Kulandainathan, M. A., Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst [J]. Electrochem. Commun. 2012, 25: 70-73.

[59] Fu, Y. H.; Sun, D. R.; Chen, Y. J., et al., An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction [J]. Angew. Chem. Int. Ed. 2012, 51(14): 3364-3367.

Privacy Policy | Copyright © 2011-2026 Ivy Publisher. All Rights Reserved.

Contact: customer@ivypub.org