您所在的位置: 首页 >> 期刊 >> 能源科学发展

能源科学发展

《能源科学发展》是IVY出版社旗下的一本关注能源研究及使用技术发展的国际期刊,是关于研究能源的开发、生产、转换、传输、分配及利用的综合性学术刊物。主要刊登有关能源科学理论,及其在自然科学、工程技术、经济和社会等各领域内的最新研究进展的学术性论文和评论性文章。旨在为该领域内的专家、学者、科研人员提供一个良好的传播、分享和探讨的交流平台,反映学术前沿水平,促进学术交流,推进能源科学技术的发展。本刊可接收中、英文稿件。其中,中文稿件要有详细的英…… 【更多】 《能源科学发展》是IVY出版社旗下的一本关注能源研究及使用技术发展的国际期刊,是关于研究能源的开发、生产、转换、传输、分配及利用的综合性学术刊物。主要刊登有关能源科学理论,及其在自然科学、工程技术、经济和社会等各领域内的最新研究进展的学术性论文和评论性文章。旨在为该领域内的专家、学者、科研人员提供一个良好的传播、分享和探讨的交流平台,反映学术前沿水平,促进学术交流,推进能源科学技术的发展。

本刊可接收中、英文稿件。其中,中文稿件要有详细的英文标题、作者、单位、摘要和关键词。初次投稿请作者按照稿件模板排版后在线投稿。稿件会经过严格、公正的同行评审步骤,录用的稿件首先发表在本刊的电子刊物上,然后高质量印刷发行。期刊面向全球公开征稿、发行,要求来稿均不涉密,文责自负。

ISSN Print:2329-809X

ISSN Online:2329-8111

Email:des@ivypub.org

Website: http://www.ivypub.org/des/

  0
  0

Paper Infomation

Research Advances in Microbial Electron Transfer of Bio-electrochemical System

Full Text(PDF, 272KB)

Author: Yunshu Zhang, Qingliang Zhao, Wei Li

Abstract: Bio-electrochemical system (BES) was an emerging biomass-energy recovery technology based on electricigens electron transfer (EET), which was applied to recover electric energy (e.g. microbial fuel cell, MFC) and resources (such as hydrogen and methane) and to enhance the removal of heavy metals and refractory organic pollutants (e.g. POPs). The process of electron transfer to the electrode was identified as the key process in such a BES system. In this paper, the recent research achievements about EET both at home and abroad were analyzed and summarized, and the electricigen diversity, the electron transfer pathways and study methods were systematically presented. Finally, the direction of EET research was pointed out.

Keywords: Bio-electrochemical System; Microbial Fuel Cell; Electricigens; Electricigen Electron Transfer

References:

[1] Potter M.C. Electrical effects accompanying the decomposition of organic compounds [J]. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 1911, 84(571): 260-276

[2] Shaoan Cheng, Defeng Xing, Douglas F. Cal,et al. Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis[J]. Environ. Sci. Technol, 2009, 43 (10): 3953-3958

[3] Bruce E. Logan, Douglas Cal, Shaoan Cheng. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter [J]. Environ. Sci. Technol., 2008, 42 (23): 8630-8640

[4] Roberto Orellana, Janet J Leavitt, Luis R Comolli, et al. U (VI) reduction by diverse outer surface c-type cytochromes of Geobacter sulfurreducens[J]. Applied and environmental microbiology. 2013, 79(20): 6369-6374

[5] Zhongjian Li, Xingwang Zhang, Lecheng Lei. Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell[J]. Process Biochemistry. 2008, 43(12): 1352-1358

[6] Liang B, Cheng H Y, Kong D Y, et al. Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode[J]. Environmental science & technology, 2013, 47(10): 5353-5361.

[7] Bin Liang, Hao-Yi Cheng, De-Yong Kong, et al. Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode[J]. Environmental science & technology. 2013, 47(10): 5353-5361

[8] Xi Chen, Xue Xia. Stacked Microbial Desalination Cells to Enhance Water Desalination Efficiency.[J] Environ. Sci. Technol. 2011, 45: 2465-2470

[9] Kelly P Nevin, Byoung-Chan Kim,Richard H Glaven, et al. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS One. 2009, 4(5): e5628

[10] BA Methe, Karen E Nelson, JA Eisen, et a. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science, 2003, 302(5652): 1967-1969

[11] Swades K Chaudhuri, Derek R Lovley. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nature biotechnology. 2003, 21(10): 1229-1232

[12] Defeng Xing, Yi Zuo, Shaoan Cheng, et al, Electricity generation by Rhodopseudomonas palustris DX-1. Environmental science & technology. 2008, 42(11): 4146-4151

[13] Lixia Zhang, Shungui Zhou, Li Zhuang, et al, Microbial fuel cell based on Klebsiella pneumonia biofilm, Electrochemistry communications. 2008, 10(10): 1641-1643

[14] Lihong Liu, Olga Tsyganova, Duu-Jong Lee, et al. Anodic biofilm in single-chamber microbial fuel cells cultivated under different temperatures, International Journal of Hydrogen Energy. 2012, 37(20): 15792-15800

[15] othinathan Deepika, Sundaram Meignanalakshmi, Wilson Richard Thilagaraj. A study on bioelectricity production by the synergistic action of Bacillus tequilensis dmr-5 and Pseudomonas aeruginosa dmr-3 isolated from rumen fluid, American Journal of Environmental Sciences, 2013, 9(5): 424

[16] Christopher W Marshall, Harold D May. Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica. Energy & Environmental Science. 2009, 2(6): 699-705

[17] Jingxin Zhang, Yaobin Zhang, Xie Quan, et al. Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe (III) reducing conditions. Bioresource technology. 2013, 136: 273-280

[18] M Lenin Babu, G Venkata Subhash, PN Sarma, et al. Bio-electrolytic conversion of acidogenic effluents to biohydrogen: An integration strategy for higher substrate conversion and product recovery. Bioresource technology. 2013, 133: 322-331

[19] Natalia J Sacco, Eva LM Figuerola, Gabriela Pataccini, et al. Performance of planar and cylindrical carbon electrodes at sedimentary microbial fuel cells. Bioresource technology. 2012, 126: 328-335

[20] Daniel A Lowy, Leonard M Tender, J Gregory Zeikus, et al, Harvesting energy from the marine sediment–water interface II: kinetic activity of anode materials. Biosensors and Bioelectronics. 2006, 21(11): 2058-2063

[21] Thomas A Clarke, Marcus J Edwards, Andrew J Gates, et al. Structure of a bacterial cell surface decaheme electron conduit. Proceedings of the National Academy of Sciences. 2011, 108(23): 9384-9389

[22] Teena Mehta, Maddalena V Coppi, Susan E Childers, et al. Outer membrane c-type cytochromes required for Fe (III) and Mn (IV) oxide reduction in Geobacter sulfurreducens. Applied and environmental microbiology. 2005, 71(12): 8634-8641

[23] Pier-Luc Tremblay, Zarath M Summers, Richard H Glaven, et al. A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by adaptive evolution. Environmental microbiology. 2011, 13(1): 13-23

[24] Muktak Aklujkar, Maddalena V Coppi, Ching Leang, et al, Proteins involved in electron transfer to Fe (III) and Mn (IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens. Microbiology. 2013, 159(Pt 3): 515-535

[25] Héctor Osorio, Stefanie Mangold, Yann Denis, et al. Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile Acidithiobacillus ferrooxidans. Applied and environmental microbiology, 2013, 79(7): 2172-2181

[26] Gemma Reguera, Kevin D McCarthy, Teena Mehta, et al. Extracellular electron transfer via microbial nanowires. Nature. 2005, 435(7045): 1098-1101

[27] Hanno Richter, Kelly P Nevin, Hongfei Jia, et al. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy & Environmental Science. 2009, 2(5): 506-516

[28] Yuri A Gorby, Svetlana Yanina, Jeffrey S McLean, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences. 2006, 103(30):11358-11363

[29] Rachida A Bouhenni, Gary J Vora, Justin C Biffinger, et al. The Role of Shewanella oneidensis MR‐1 Outer Surface Structures in Extracellular Electron Transfer. Electroanalysis. 2010, 22(7-8): 856-864

[30] Anna Klimes, Ashley E Franks, Richard H Glaven, et al. Production of pilus-like filaments in Geobacter sulfurreducens in the absence of the type IV pilin protein PilA. FEMS microbiology letters. 2010, 310(1): 62-68

[31] Korneel Rabaey, Nico Boon, Steven D Siciliano, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology. 2004, 70(9): 5373-5382

[32] Akihiro Okamoto, Kazuhito Hashimoto, Kenneth H Nealson, et al. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proceedings of the National Academy of Sciences. 2013, 110(19): 7856-7861

[33] Michaela A. TerAvest, Miriam A. Rosenbaum1, Nicholas J. Kotloski, et al. Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system. Biotechnology and Bioengineering. 2014, 111(4): 692-699

[34] Cindy Castelle, Marianne Guiral, Guillaume Malarte, et al. A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes isolated from the extreme acidophile Acidithiobacillus ferrooxidans. Journal of biological chemistry. 2008, 283(38): 25803-25811

[35] XianWei Liu, YuXi Huang, XueFei Sun, et al. Conductive carbon nanotube hydrogel as a bioanode for enhancemicrobial electrocatalysis. Environ. Sci. Technol. 2014, 6(11): 8515-8164

[36] Alessandro A Carmona-Martinez, Falk Harnisch, Lisa A Fitzgerald, et al. Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1and nanofilament and cytochrome knock-out mutants. Bioelectrochemistry. 2011, 81(2): 74-80

[37] Chao Wu, Yuan-Yuan Cheng, Bing-Bing Li, et al. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1. Bioresource technology. 2013, 136: 711-714

Privacy Policy | Copyright © 2011-2026 Ivy Publisher. All Rights Reserved.

Contact: customer@ivypub.org