您所在的位置: 首页 >> 期刊 >> 能源科学发展

能源科学发展

《能源科学发展》是IVY出版社旗下的一本关注能源研究及使用技术发展的国际期刊,是关于研究能源的开发、生产、转换、传输、分配及利用的综合性学术刊物。主要刊登有关能源科学理论,及其在自然科学、工程技术、经济和社会等各领域内的最新研究进展的学术性论文和评论性文章。旨在为该领域内的专家、学者、科研人员提供一个良好的传播、分享和探讨的交流平台,反映学术前沿水平,促进学术交流,推进能源科学技术的发展。本刊可接收中、英文稿件。其中,中文稿件要有详细的英…… 【更多】 《能源科学发展》是IVY出版社旗下的一本关注能源研究及使用技术发展的国际期刊,是关于研究能源的开发、生产、转换、传输、分配及利用的综合性学术刊物。主要刊登有关能源科学理论,及其在自然科学、工程技术、经济和社会等各领域内的最新研究进展的学术性论文和评论性文章。旨在为该领域内的专家、学者、科研人员提供一个良好的传播、分享和探讨的交流平台,反映学术前沿水平,促进学术交流,推进能源科学技术的发展。

本刊可接收中、英文稿件。其中,中文稿件要有详细的英文标题、作者、单位、摘要和关键词。初次投稿请作者按照稿件模板排版后在线投稿。稿件会经过严格、公正的同行评审步骤,录用的稿件首先发表在本刊的电子刊物上,然后高质量印刷发行。期刊面向全球公开征稿、发行,要求来稿均不涉密,文责自负。

ISSN Print:2329-809X

ISSN Online:2329-8111

Email:des@ivypub.org

Website: http://www.ivypub.org/des/

  0
  0

Paper Infomation

Study on Optical Performance of Solar Air Compressor

Full Text(PDF, 1792KB)

Author: Lu Wang, Zhongxian Yuan

Abstract: The optical performance of the solar thermal power device has an important influence on its total working efficiency. In this paper, the Monte Carlo ray trace method is used to simulate the optical performance of the designed solar air compressor system. In order to analyze the energy density distribution on the receiver and the optical efficiency of the solar air compressor, the geometrical model of the main optical components including the point-focusing Fresnel lens, quartz glass window, and heating pipe have been built using Tracepro software. The results show that the energy density distribution on the interior surfaces of the heating pipe is extremely non-uniform. What’s more, when the length of the heat absorption tube is increased, the diameter of the light hole is reduced, and the absorption rate of the heat pipe inner surface is increased, the optical efficiency of the system and the light-to-heat conversion performance will be improved.

Keywords: Optical Performance, Monte Carlo, Air Compressor, Heating Pipe

References:

[1] Wu S Y, Xiao L, Cao Y, et al. A parabolic dish/AMTEC solar thermal power system and its performance evaluation[J]. Applied Energy, 2010, 87(2): 452-462.

[2] Du S W, Li X H, Yuan Z X, et al. Performance of solar adsorption refrigeration in system of SAPO-34 and ZSM-5 zeolite[J]. Solar Energy, 2016, 138: 98-104.

[3] Lecuona A, Nogueira J I, Ventas R, et al. Solar cooker of the portable parabolic type incorporating heat storage based on PCM[J]. Applied energy, 2013, 111: 1136-1146.

[4] Al-harahsheh M, Abu-Arabi M, Mousa H, et al. Solar desalination using solar still enhanced by external solar collector and PCM[J]. Applied Thermal Engineering, 2018, 128: 1030-1040.

[5] Wang H J, Liu S, Kang L, et al. Simulation Study on Optical Performance of Cavity Receiver in Solar Power Tower System[J]. Journal of Engineering for Thermal Energy & Power, 2017.

[6] Shuai Y, Xia X L, Tan H P. Radiation performance of dish solar concentrator/cavity receiver systems[J]. Solar Energy, 2008, 82(1): 13-21.

[7] Villafán-Vidales H I, Arancibia-Bulnes C A, Dehesa-Carrasco U, et al. Monte Carlo radiative transfer simulation of a cavity solar reactor for the reduction of cerium oxide[J]. International Journal of Hydrogen Energy, 2009, 34(1): 115-124.

[8] Riveros-Rosas D, Herrera-Vázquez J, Pérez-Rábago C A, et al. Optical design of a high radiative flux solar furnace for Mexico[J]. Solar Energy, 2010, 84(5): 792-800.

[9] Lin M, Sumathy K, Dai Y J, et al. Performance investigation on a linear Fresnel lens solar collector using cavity receiver[J]. Solar Energy, 2014, 107: 50-62.

[10] Buck R, Brauning T, Denk T, et al. Solar-hybrid gas turbine-based power tower systems (REFOS)[J]. Journal of Solar Energy Engineering, 2002, 124(1): 2-9.

[11] TracePro 5.0. Users’ manual 5.0; 2009.

Privacy Policy | Copyright © 2011-2024 Ivy Publisher. All Rights Reserved.

Contact: customer@ivypub.org