您所在的位置: 首页 >> 期刊 >> 电气工程与自动化

电气工程与自动化

《电气工程与自动化》是IVY出版社旗下的一本关注电气理论及其自动化发展的国际期刊,是电气理论与现代工业技术相结合的综合性学术刊物。主要刊登有关电力电子,及其在自然科学、工程技术、经济和社会等各领域内的最新研究进展的学术性论文和评论性文章。旨在为该领域内的专家、学者、科研人员提供一个良好的传播、分享和探讨电气理论进展的交流平台,反映学术前沿水平,促进学术交流,推进电气理论和自动化应用技术的发展。本刊可接收中、英文稿件。其中,中文稿件要有详细的英文…… 【更多】 《电气工程与自动化》是IVY出版社旗下的一本关注电气理论及其自动化发展的国际期刊,是电气理论与现代工业技术相结合的综合性学术刊物。主要刊登有关电力电子,及其在自然科学、工程技术、经济和社会等各领域内的最新研究进展的学术性论文和评论性文章。旨在为该领域内的专家、学者、科研人员提供一个良好的传播、分享和探讨电气理论进展的交流平台,反映学术前沿水平,促进学术交流,推进电气理论和自动化应用技术的发展。
本刊可接收中、英文稿件。其中,中文稿件要有详细的英文标题、作者、单位、摘要和关键词。初次投稿请作者按照稿件模板排版后在线投稿。稿件会经过严格、公正的同行评审步骤,录用的稿件首先发表在本刊的电子刊物上,然后高质量印刷发行。期刊面向全球公开征稿、发行,要求来稿均不涉密,文责自负。

ISSN Print:2326-876X

ISSN Online:2326-8778

Email:eea@ivypub.org

Website: http://www.ivypub.org/eea/

  0
  0

Paper Infomation

Fault Detection and Prevention Strategies in Power Systems

Full Text(PDF, 49KB)

Author: Fuyang Miao

Abstract: Power systems are critical to modern society, but their complexity has increased with the integration of renewable energy and advanced technologies. This paper explores fault detection and prevention strategies essential for ensuring system reliability. We examine traditional methods such as overcurrent and differential protection, as well as advanced techniques including machine learning (ML) and artificial intelligence (AI). Additionally, we discuss fault prevention strategies like predictive maintenance, redundancy, and self-healing grids. Despite advancements, challenges such as the complexity of modern grids, cybersecurity threats, and economic constraints remain. The paper concludes with future prospects, emphasizing emerging technologies and global research initiatives aimed at enhancing grid resilience and security.

Keywords: Fault Detection, Fault Prevention, Power Systems, Machine Learning, Artificial Intelligence, Predictive Maintenance

References:

[1] Xu Y, Zou Y, Liu L, et al. An Improved Prevention Strategy Based on Fault Probability Detection for Commutation Failure in Line-Commutated Converter-Based High-Voltage Direct Current Transmission Systems[J].Electronics,2024,13(19):3804-3804.

[2] Liu F. Efficient Fault Detection and Analysis of Power System Distribution Networks by Integrating BP Data Mining[J].International Journal of Reliability, Quality and Safety Engineering,2024,31(06):

[3] Fera F, Spandonidis C. A Fault Diagnosis Approach Utilizing Artificial Intelligence for Maritime Power Systems within an Integrated Digital Twin Framework[J].Applied Sciences,2024,14(18):8107-8107.

[4] Kokila SL M, Christopher BV, Ramya G. Enhanced power system fault detection using quantum‐AI and herd immunity quantum‐AI fault detection with herd immunity optimisation in power systems[J].IET Quantum Communication,2024,5(4):340-348.

[5] Senemmar S, Jacob A R, Zhang J. Non-intrusive fault detection in shipboard power systems using wavelet graph neural networks[J].Measurement: Energy,2024,3100009-100009.

[6] Zhanjun L, Bo H, Tianqi L, et al. Research on risk prevention and control strategy of power grid CPS system based on intrusion tolerance[J].IOP Conference Series: Earth and Environmental Science,2021,675(1):012156-.

[7] Engineering; New Findings on Engineering Described by Investigators at Yonsei University (Dc Power Control Strategy of Mmc for Commutation Failure Prevention In Hybrid Multi-terminal Hvdc System)[J].Energy & Ecology,2020,661-.

[8] Reinforcement Learning; Reports Outline Reinforcement Learning Study Findings from Guangxi University (Deep Forest Reinforcement Learning for Preventive Strategy Considering Automatic Generation Control in Large-Scale Interconnected Power Systems)[J].Journal of Engineering,2018,1034-.

Privacy Policy | Copyright © 2011-2025 Ivy Publisher. All Rights Reserved.

Contact: customer@ivypub.org